
Preventing Recursion Deadlock inConcurrent Object-Oriented SystemsbyEric A. Brewer Carl A. WaldspurgerTechnical Report MIT/LCS/TR-526January 1992AbstractThis paper presents solutions to the problem of deadlock due to recursion in concurrent object-oriented programming languages. Two language-independent, system-level mechanisms forsolving this problem are proposed: a novel technique using multi-ported objects, and a named-threads scheme that borrows from previous work in distributed computing. We compare thesolutions and present an analysis of their relative merits.Keywords: deadlock, recursion, object-oriented systems, programming languages, concurrencyc Massachusetts Institute of Technology 1992This work was supported in part by the National Science Foundation under grant CCR-8716884,by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-89-J-1988, and by an equipment grant from Digital Equipment Corporation. Eric A. Brewer wassupported by an O�ce of Naval Research Fellowship.Massachusetts Institute of TechnologyLaboratory for Computer ScienceCambridge, Massachusetts 02139

2 1 INTRODUCTION1 IntroductionRecursion is a powerful programming technique that allows straightforward expression of manyalgorithms. Unfortunately, recursion often leads to deadlock in contemporary concurrent object-oriented systems. In many systems [Ame87, Yon87, Man87, Chi90], a method that modi�esan object's state cannot even call itself recursively. This occurs because the object (as sender)is blocked waiting for its call to complete, but the called method never executes because theobject (as receiver) is blocked. In general, recursion deadlock occurs whenever an object isblocked pending a result whose computation requires the invocation of additional methods onthat same object.We present two transparent solutions that allow general recursion without deadlock. Thesesolutions are transparent in that programs su�ering from recursion deadlock will run correctlywithout change if either solution is incorporated into the underlying system. The �rst solutionis based on multi-ported objects, and uses separate communication ports to identify recursivecalls. The second solution, named threads, draws on previous work in distributed computing,and generates a unique name for each thread in order to detect recursive calls.A combination of three factors leads to recursion deadlock. First, an object must hold a lockon some state. In systems with at most one active thread per object [Ame87, Yon87, Man87,Chi90], there is a single implicit lock for the entire object state. Second, the object must makea blocking call to some object (possibly itself), holding the lock while it waits for the responseto the call. Finally, the resulting call graph must contain a call back to the locked object thatrequires access to the locked state, forming a cycle. When these criteria are met, every objectinvolved in the cycle is waiting for a reply, but none of the objects can make any progress. Theobjects on the cycle are deadlocked.Aside from simple recursive methods, many patterns of message-passing can lead to recur-sion deadlock. A common practice in programming sequential object-oriented systems is touse a method as a modular \subroutine" from within another method de�ned on the sameobject. An attempt to do this in a concurrent system, however, will result in deadlock. Moresophisticated programs that manipulate cyclic data structures, use call-backs while respondingto unusual or exceptional conditions, or implement dynamic sharing mechanisms are all candi-dates for recursion deadlock. Some programming styles are also prone to recursion deadlock.For example, using inheritance by delegation [Lie86, Lie87], an object can delegate the handlingof a method to another object dynamically. In a delegated call, references to self should beresolved to the original object that performed the delegation.1 Thus, all calls to self involve1The term self may be somewhat misleading in this context. Whenever a message is delegated, it must

3call-backs that could lead to recursion deadlock.In the next section, we examine existing work related to the recursion deadlock problem. Ourbasic model of concurrent object-oriented systems is de�ned in section 3. Section 4 discussesthe semantics of recursion without deadlock. In section 5, we outline our general solutionframework, and we present the solutions in sections 6 and 7. An illustrative example appearsin section 8. Finally, we compare the solutions in section 9, and then present our conclusions.2 Related WorkA variety of partial solutions exist for handling some cases of recursion deadlock. The simplestpartial solutions handle only direct recursion involving a single object. These amount to re-leasing the object lock and ensuring that the next method invoked is the recursive call (e.g.,by prepending it to the incoming message queue), which will reacquire the lock. This approachis implicit in languages such as Vulcan [Kah87], which ensure that calls to self are processedbefore other incoming messages.Another solution for direct recursion is to provide procedures in addition to methods [Yon87].Unlike methods, procedures are stateless and need not be associated with an object. Sinceprocedures are stateless, they do not require locks. Using this approach, a method calls aprocedure and the procedure handles the recursion. This avoids deadlock because there is nolock acquisition, assuming the procedures never invoke any methods. (Recursion deadlock ispossible if the procedures invoke methods or otherwise acquire locks.) Since procedures onlyhave access to the current object's state, multiple-object recursion is not possible.A partial solution for �xed-depth recursion is the use of selective message acceptance con-structs [Yon87, Ame87]. For example, ABCL/1 allows calls to be accepted in the body of amethod if the object enters a selective \waiting mode". In this case, the recursive call is handledin the body and need not acquire the object lock. An explicit waiting mode must be introducedfor each level of recursion; if there are too many recursive calls the system will deadlock.If recursive calling patterns are completely known in advance, deadlock can be avoidedin actor systems by using replacement actors. By cleverly specifying insensitive actors thatbu�er most incoming messages while responding to a few special messages (such as become),programmers can write code that explicitly avoids potential deadlocks [Agh86]. Insensitiveactors are automatically generated by compilers for actor languages to support the acceptance ofinclude a reference to the client object that originally received the message. The term client is used becausethe object that is the target of the delegation can be thought of as performing a service for the original object[Lie86].

4 3 COMPUTATIONAL MODELreplies to messages sent by a locked actor.2 Although actor replacement provides the exibilityrequired to write deadlock-free code, the complexity of explicitly introducing insensitive actorsand behaviors for all possible recursive calling patterns is daunting. In fact, these low-levelactor mechanisms could be used to implement the solutions we propose without system-levelchanges. In general, systems that provide linguistic control of message acceptance, such asenabled-sets [Tom89] or protocols [Bos89], can be used to implement our language-independentsolutions.Techniques for deadlock detection from the distributed systems and database literature[Gli80, Sin89] could also be used to address the recursion deadlock problem. Deadlock de-tection algorithms examine process and resource interactions to �nd cycles (assumed to berelatively infrequent), and usually operate autonomously, separate from normal system activi-ties. Although such schemes theoretically could be used to detect and recover from deadlocksin a concurrent object-oriented system, they would not be practical for �ne-grained programsthat use recursion. Nevertheless, the general idea of maintaining a list of blocked-process de-pendencies is related to the deadlock-prevention techniques that we propose.Finally, recursion deadlock is closely related to the nested-monitor problem [Lis77]. In thenested-monitor problem, monitors correspond to objects with a single lock. Nested-monitorcalls correspond to blocking calls made while an object holds its lock. Thus, deadlock occurs ifthere is a cycle in the call chain.3 Most work on the nested-monitor problem occurred beforethe advent of concurrent object-oriented languages. Solutions presented during that periodamounted to either releasing the lock across the call or forbidding calls entirely [Had77].3 Computational ModelWe make a few basic assumptions about the underlying computational model. The model weassume encompasses most contemporary concurrent object-oriented systems. Objects abstractlyencapsulate local state with a set of methods that can manipulate that state directly. Objectsinteract only by sending messages to invoke methods at other objects. To avoid ambiguity, wede�ne the following terms:� Message: A message is a request from a sender object to a receiver object to perform anoperation. A message causes the invocation of a particular method at the receiver; the2In actor parlance, an actor that has not yet computed its replacement behavior.3The nested-monitor problem is not restricted to cyclic calls. At the time, other forms of deadlock were theprimary concern.

5arguments for that method are passed in the message. Messages may or may not arrivein the order they were sent, but message delivery is guaranteed.� Message Queue: Each object has a message queue that bu�ers all incoming messages.An object removes messages from its queue and invokes the corresponding methods. Weignore issues of message priority and queue overow.� Send: We divide messages into two categories, sends and calls. A send is an asynchronous,non-blocking method invocation. It is unidirectional, and has no corresponding reply.After performing a send, the sender immediately continues execution, and does not waitfor a reply or for the completion of the invoked method.� Call: A call is a synchronous, blocking method invocation. After performing a call, thesender waits for a reply. This is analogous to normal procedure call semantics. Any locksheld by the sender prior to the call are held until the reply is received. Every call hasa matching reply; we assume the underlying system handles the matching of call-replypairs.4A set of concurrent calls may also be sent such that each of the calls operates in parallel,and the sender waits for replies from all of the calls before continuing execution. Thiscorresponds to a fork{join semantics.� Lock: A lock ensures mutual exclusion for some piece of state. A given object maycontain several locks. We assume that locks are the underlying primitive synchronizationmechanism for mutual exclusion. Lock acquisition may be implicit or explicit. In actorlanguages, for example, a single object lock is acquired implicitly upon method invocationand is released explicitly via the ready construct, which indicates that the method has�nished modifying the actor's state.5To avoid complication, we will assume that there is a single implicit lock per object thatprovides mutual exclusion for the entire object state, as in most contemporary languages[Ame87, Yon87, Man87, Chi90]. However, the solutions we present can be easily adaptedfor languages with more sophisticated locking schemes; we briey discuss this after pre-senting the solutions for the single-lock case.� Thread: A thread is a single ow of control that performs a sequential computation.A single thread may execute code at several di�erent objects. For example, if object4We do not preclude explicit handling of reply values, which can be useful for forwarding or delegation.5In actor terms, there is no mutation; the actor computes a new \replacement actor" to process subsequentmessages.

6 4 RECURSIVE CALL SEMANTICSA calls object B, the sequential ow of control would initially execute some code at A,then proceed to execute the invoked method at B, and �nally continue execution backat A. In a sense, the thread travels with the messages between A and B. This viewof threads may di�er from the low-level details of the underlying implementation, whichmight involve two distinct \threads" at A and B. Semantically, however, there is onlyone thread because the computation is sequential.A thread can also fork several distinct subthreads by performing concurrent calls. In thiscase, the original thread is suspended until its subthreads, or children, all reply and joinwith the original parent thread.64 Recursive Call Semantics4.1 Existing Sequential SemanticsIn sequential object-oriented systems such as Smalltalk-80 [Gol83] and C++ [Str86], there isonly a single thread of control, so mutual-exclusion locks are unnecessary. In these systems, ifthe call chain generated during a method invocation results in a later invocation on the sameobject, the recursive call is permitted to modify the object's state. Thus, a recursive call maybe used to change the state of an object in sequential object-oriented systems, and there is nodeadlock issue.4.2 Proposed Concurrent SemanticsIn concurrent systems, a complete lack of mutual exclusion is not satisfactory because of theneed to avoid interference between concurrently executing threads. For example, consider abank account object A with a current balance of $100 that is accessed concurrently by twodi�erent threads, t1 and t2. Without provisions for serialization, t1 and t2 could concurrentlyinvoke \withdraw $75" methods on A. If both threads happened to read the current balancebefore either modi�ed it to reect a withdrawal, the account would have a balance of $25instead of being overdrawn. In order to serialize the withdraw methods, a mutual-exclusionlock could be associated with the account balance to ensure that each method appears toexecute atomically. However, the addition of this lock makes recursion deadlock possible.Ideally, we would like to preserve atomicity while eliminating the potential for recursiondeadlock. Our proposed semantics for concurrent systems is consistent with the \expected"6Joins are relevant only for blocking calls.

4.3 Recursion and Message Order 7behavior in sequential systems: we allow recursive calls to execute without (re)acquiring locks.However, the resulting behavior is unde�ned if a thread forks subthreads. When a threadforks several children, which thread gets the lock? If all subthreads have access to the objectstate, they may interfere with one another, exactly the behavior locks are supposed to prevent.The desired behavior is that any of the descendant threads may access the state, but only onemay have access at any given time. Thus, our proposed semantics is to satisfy two properties:�rst, descendants must be able to acquire locks held by their ancestors, and second, mutualexclusion must be provided among siblings. One way to view this is that a descendant threadmust acquire a lock from its ancestor, providing mutual exclusion from its siblings. The lockis returned to the ancestor when the descendant releases it. Once returned another descendantmay acquire the lock.The semantics discussed so far provide mutual exclusion at the granularity of a singlemethod. Atomicity at both smaller and larger grain sizes may be desirable. Finer granularityexclusion can be provided by explicitly acquiring and releasing locks within a method. Largergranularity exclusion requires that threads hold locks across multiple method invocations. Al-though our work does not address these granularities explicitly, they can be handled by thesolutions we present with simple modi�cations. Furthermore, most concurrent object-orientedlanguages provide little or no support for �ne- or coarse-grain locking.7 These languages com-monly acquire locks upon method invocation and release them at or near completion of themethod. This implicitly limits the granularity of mutual exclusion to the method level.The recursion allowed by the solutions presented in this paper is generated by calls, not bysends. This implies that a method that performs a send and requires a result generated by thatsend before it completes will su�er from deadlock upon recursion. For example, a method thatperforms a request using send, and then waits for information from a second send, will deadlockif recursion is required to generate the second send. The obvious solution is to use call instead,so that the reply either is the result or guarantees that the required action has taken place.Thus we view send as a mechanism for causing remote actions that need not complete beforethe current method. This matches the use of call and send in current object-oriented systems.4.3 Recursion and Message OrderThe e�ect of the proposed mechanisms on message order depends on the policy of the un-derlying language. In some languages, such as Acore [Man87], message ordering is completelynondeterministic. Others, such as ABCL/1 [Yon87], make the transmission-order preserva-7Exceptions include Argus [Lis88] and Concurrent Smalltalk [Dal87].

8 6 MULTI-PORTED OBJECT SOLUTIONtion assumption (TOPA). TOPA guarantees point-to-point ordering: for any pair of messagessent from an object X to another object Y , the order of reception is identical to the order oftransmission.If message ordering is nondeterministic, there are no ordering constraints that our mecha-nisms could violate. If TOPA is guaranteed by the underlying message delivery system, thenour mechanisms preserve TOPA.However, recursion introduce a new notion of order. Recursion implies that recursive sub-tasks are logically part of the current task. In other words, all nested subtasks must completebefore the current task can complete. Thus recursive subtasks (spawned by recursive messages)must be executed while the main task is waiting for the reply that the subtasks are supposedto generate. The logical order of execution is the order of reception, except that only recursivesubtasks execute while the main task blocks on a call. Recursive messages are handled in theorder received relative to other recursive messages, but before all non-recursive messages.5 General Solution FrameworkWe describe two di�erent transparent system-level mechanisms that allow programmers toexpress computations using recursive methods. No syntactic changes or programmer-visiblelinguistic mechanisms are necessary.The solutions presented in this paper have two key aspects in common. First, each messageis tagged with identifying information by its sender. Second, each object �lters incoming mes-sages, dynamically deciding whether to accept or bu�er each message based on the identifyinginformation that it contains. A subset of messages in the message queue are currently accept-able. A predicate, called the accept predicate, is used to test for membership in this set. Whenan object is ready to process a new message, it accepts the �rst message in its message queuethat satis�es the accept predicate.6 Multi-Ported Object SolutionIn this section we present a novel solution to the recursion deadlock problem using multiplecommunication channels, or ports, per object. Conventional object-oriented systems assumeobjects have a single port through which all incoming messages arrive. The traditional notionof an object can be relaxed to allow several ports. The use of multiple ports to enable di�erentclient capabilities, multiple viewpoints, and secure communications is explored in [Kah89]. Wedemonstrate that the recursion deadlock problem can be solved by providing objects with the

6.1 Message Acceptance 9ability to create and select ports dynamically.The recursion problem is solved by creating a new current port for each method invocation.This port receives all replies and recursive calls, and persists until the method terminates. Anobject accepts incoming messages from its current port, and bu�ers messages addressed to otherports. The current port for an idle object X is the distinguished top-level port PX0 .6.1 Message AcceptanceMessages that arrive at an object X while it is executing some method H are bu�ered in themessage queue associated with X for later processing. If H is blocked pending the arrivalof messages that are required for further computation, or if H completes, X enters messagereception mode. At this pointX may begin processing messages that satisfy the accept predicate.Multi-ported objects use the following accept predicate: a message is accepted if and only if itis addressed to the current port.6.2 Message HandlingNormal object semantics guarantee that for each object, only one method activation exists ata time; objects process messages serially (between state transitions). To permit recursive calls,we weaken this constraint to require that each object maintain a method activation stack ofpending method activation frames, and guarantee that only the activation at the top of thisstack may be actively executing. This corresponds to the stack of procedure call frames foundin conventional sequential languages.The top frame on the method activation stack contains the state of the currently executingcomputation. Frames other than the top frame contain the state of suspended method invo-cations that are blocked pending the arrival of reply messages. New frames are pushed on themethod activation stack when handling messages other than replies.8When message M is accepted by object X , the following actions are performed:1. If M is a reply, match the reply value to its corresponding call. If there are no remainingoutstanding concurrent calls, resume the associated blocked thread.2. Otherwise, the following actions are performed:(a) A new frame is allocated on top of the method activation stack.8If the current port is the distinguished top-level port, these messages can be top-level calls or sends. Other-wise, these messages will be recursive calls.

10 6 MULTI-PORTED OBJECT SOLUTION(b) A new, locally unique port number P is generated (perhaps by simply incrementinga counter) and associated with the frame. This port becomes the new current port;the set of currently acceptable messages are those addressed to P .(c) The appropriate method named by M is invoked.When a method completes, its frame is popped o� the method activation stack. The currentport is then set to the port associated with the suspended method currently on top of theactivation stack.6.3 Sending MessagesIn the following discussion, assume that an object X , during the invocation of its method Hin response to a message M , is sending a message MY to object Y . The current port for Xduring its handling of H is denoted by PXh .MY is augmented with a port binding map, BMY , that associates object names with com-munication ports. In general, the size of a port binding map BM is proportional to the numberof distinct objects involved in the processing of message M . The procedure for sending MY is:1. If MY is a send:(a) Set BMY to nil.(b) Send MY to Y at port PY0 .2. If MY is a call, compute the destination port and the port binding map to be sent withM :(a) The destination port p is computed by searching for the port associated with Y inthe port binding map BM from message M . If Y 62 BM , then set p to PY0 .(b) Set BMY to be the same as BM extended9 (or changed) to map X ! PXh .(c) Send MY to Y at port p, saving the appropriate information to match up the replyfrom Y .(d) If MY is one of several concurrent calls, perform the remaining calls. After perform-ing the last call, suspend the current thread pending replies.9This extension (or change) is done at most once per method invocation, not once per call.

6.4 Extension for Multiple Locks 116.4 Extension for Multiple LocksSome languages, such as Concurrent Smalltalk [Dal87], support the addition of explicit locksfor object methods as a general mechanism for concurrency control. The multi-ported objectsolution for recursion deadlock can be adapted to work with such languages.Basically, the notion of a current port is extended to a current port set ; each lock has anassociated current port. Port binding maps associate object names with communication portsets. The accept predicate is modi�ed to accept a message if and only if it is addressed to thecurrent set of ports. When an incoming message is accepted, a new method activation frame isallocated, and an associated unique port number is generated for every lock that the methodacquires. When a call message is sent, the current port binding map is extended (or changed)to map self to the current port set.6.5 SummaryIn summary, an object creates a port for each method invocation. This port is used exclusivelyfor replies and recursive calls. The port name is propagated in the port binding maps of callmessages to objects that perform computations as subtasks on behalf of the current method.Each call is addressed to a speci�c destination port, and is accepted by an object only if its portmatches the port associated with the current method. Section 8 presents an example using themulti-ported object approach to avoid recursion deadlock.7 Named-Threads SolutionThe essential elements of named threads are based on action ids from Argus [Lis88, Lis87], alanguage for robust distributed computing. The named-threads approach to avoiding recursiondeadlock assigns each thread a unique identi�er that travels with it through every object andmessage. Every object has a current owner, which is its currently executing thread, and everymessage has a name, which is that of the thread that carries it. In a recursive call, the nameof the message matches the name of the owner. This avoids the deadlock that results fromattempting to reacquire access to the state.The simplest cases occur in systems without concurrent calls. In such situations, a threadis given a unique name that it keeps for the duration of its existence. Upon acquiring accessto the object's state, the thread marks itself as the owner of the object using its name orthread id. Upon recursion, the thread id of the message is checked against the thread id of theowner. If the ids match, the incoming message has access to the state. Because the new task

12 7 NAMED-THREADS SOLUTIONcan determine that it already has access, it does not wait for the current task to �nish, thusavoiding deadlock.The essential elements of named threads originated in Argus [Lis88], a language for robustdistributed computing. Argus uses transactions to provide fault tolerance: a transaction eithercompletes correctly, or if aborted, has no e�ect on the state of the system. A transaction ofteninvolves several objects (possibly on di�erent machines) and several threads within an object.The techniques used to provide fault tolerance over many machines are quite complex and arenot all relevant to recursion deadlock. Hidden in those techniques are the use of action ids,upon which thread ids are based [Lis87].7.1 Concurrent CallsMost concurrent object-oriented languages allow a single thread to create multiple threads.This wreaks havoc with the simple thread-id solution presented above. As discussed in Section3, two requirements must be met for the desired semantics: descendants must be able to acquirelocks held by their ancestors, and mutual exclusion must be provided among siblings. Theserequirements lead to the following convention for naming threads.Upon creation, a thread is given a unique identi�er. This could be done by using a com-bination of the id of the creating object and some time-dependent integer, such as a simplecounter. As expected, the di�culties arise with concurrent calls. A set of concurrent blockingcalls will be referred to as a call group. When a thread forks subthreads, we extend its threadid for every member of its call group. The extension is di�erent for every resulting thread. Forexample, if thread t performs three concurrent calls, the three new threads are: t.1, t.2, andt.3. If t.1 then spawns a two-member call group, there are six threads in total: t, t.1, t.1.1,t.1.2, t.2, and t.3. Note that each thread has a unique thread id, and that a thread id encodesall of the thread's ancestors. A thread is an ancestor of another thread exactly when its id is apre�x of the other's id.The use of named threads requires some extensions to the basic object model. First, theobject lock must have an owner. This �eld holds the name of the currently executing thread andis referred to as owner. Second, there must be a stack of pending call messages (as explainedbelow), referred to as ownerStack. Finally, each message must have a �eld that contains itsthread id.

7.2 Message Acceptance 137.2 Message AcceptanceThe named-threads approach employs the following accept predicate: a message is accepted ifand only if it is a descendant of owner. That is, ownermust be a pre�x of the thread id associatedwith the message to be accepted. The accept predicate changes every time owner changes. Theowner �eld initially contains nil, which yields a predicate that accepts all messages. Acceptedmessages are handled as follows:1. If the message is a reply, then it is a response to a call spawned by the current owner.(If it did not match the current owner, it would not have been accepted.) The blockedthread is resumed.2. Otherwise, the message is a recursive call. In this case, the current owner is pushed ontothe stack ownerStack. The thread named by the id of the message becomes the newowner, and the method for the message executes.7.3 Choosing the Next ThreadOnce a thread is started, no new messages are accepted until the thread either ends or performsa call. When the thread ends, the next thread is chosen as follows:1. The previous owner is popped o� of ownerStack. This changes the accept predicate,which could make previously unacceptable messages acceptable.2. The next message is chosen based on the new predicate. There must eventually be amessage, namely the matching reply to the pending call.7.4 Sending MessagesIf a thread performs a call, the object starts accepting messages. Because the thread owns thelock, only descendant messages or the reply will be accepted. A send does not pass on thethread id, leaving the id �eld of the message empty. Thus methods executed in response tosends start new threads.When concurrent calls are made, the thread id of each member of the call group is extendedby a unique number. All of the members are descendants of the original thread, but no memberis an ancestor of another member. This guarantees that at most one member of the call groupcan have access to an object at any given time. The spawning thread retains ownership ofthe lock until one of the concurrent calls recurses, or until all the replies are received and themethod completes.

14 8 AN ILLUSTRATIVE EXAMPLE7.5 Extension for Multiple LocksAs in the multi-ported object solution, the named-thread solution can be modi�ed to handlemultiple locks per object. Each object has a set of locks and a method requires a particularsubset in order to execute. Each lock has an owner �eld and a stack of owners. As in thesingle-lock case, the owner �eld contains the name of the thread that holds the lock. A messageis accepted if it can obtain all of the locks needed by the corresponding method. Every lockthe method needs must be either free or owned by an ancestor. If the required subset can beobtained, the current thread becomes the new owner of every lock in the subset. The previousowners are pushed onto the corresponding stacks. Upon release of a lock, the previous owneris restored.7.6 SummaryIn summary, recursion is detected by encoding ancestry in thread ids. Recursive calls are de-scendants of the blocked call, and are allowed to execute. Names are extended when concurrentcalls are made, providing mutual exclusion among the resulting threads. An example is givenin the next section.8 An Illustrative ExampleConsider a do-query method de�ned for a node object that is connected to other nodes in agraph. When invoked on a node N , this method queries each of N 's children concurrently andthen returns a function of their replies. The children compute their replies in the same way. Asis common in sequential implementations, a node object marks itself visited the �rst time it isqueried, and the do-query method returns immediately if an object has already been visited.To illustrate our solutions, we examine this abstract concurrent query algorithm on part ofa larger graph. Note that the call tree is isomorphic to the graph; calls are made along thedirected edges.Figure 1(a) presents a graph that does not involve recursion. Figure 1(b) depicts a queryperformed in this graph. Object X queries object W , which concurrently queries objects Yand Z. All of the queries complete and X returns the result. Figure 1(c) presents a graph thatinvolves recursion; the corresponding query in �gure 1(d) su�ers from recursion deadlock. SinceX is blocked waiting for the query to W to complete, the query from W to X never executes.The method at W will not complete until X replies, and X will not reply until the method atW completes. The following two subsections illustrate how the solutions eliminate recursion

15
Z

W

X

Y

(a)

Z

W

X

Y

(e)

Z

W

X

Y

LOCKED !

(d)

Z

W

X

Y

(c)

Z

W

X

Y

(b)

Figure 1: Graph fragments and calling patterns in the abstract query example. In the callingpattern diagrams, call and reply messages are represented by solid and hollow arrowheadsrespectively. (a) A non-recursive graph fragment. (b) Call pattern in the non-recursive graphfragment. X calls W , which concurrently calls Y and Z. (c) A recursive graph fragment.(d) Call pattern in the recursive graph fragment. X calls W , which concurrently calls X andY , resulting in deadlock. (e) A deadlock-free call chain, which uses the solution techniquespresented in the paper.

16 8 AN ILLUSTRATIVE EXAMPLEdeadlock in this example.8.1 A Multi-Ported Object SolutionThe following steps, depicted in Figure 1(e), trace the message-passing activity for the examplepresented above. Assume that objects W , Y , and Z are initially idle, with current ports PW0 ,PY0 , and PZ0 , respectively. Assume thatX calls W while its current frame is X5, with associatedport PX5 .1. X calls do-query at W on port PW0 , using the port binding map10 B = f(X ! PX5)g.2. W receives X 's call: W starts a new frame W1 with associated port PW1 . W concurrentlycalls X and Y , using B = f(X ! PX5); (W ! PW1)g. The call to X is sent to X 's portPX5 , and the call to Y is sent to Y 's port P Y0 .3. Concurrently:(a) Y receives W 's call: Y starts a new frame Y1 with associated port PY1 . Y replies toW , and ends frame Y1.(b) X receives W 's call: Note that this is a recursive call involving the path of objectsX !W! X . X accepts the message since it is addressed to X 's current port PX5 .X starts a new frame X6 with associated port PX6 . X replies to W , and then endsframe X6, restoring X5 as the current frame.4. W receives the replies from X and Y .5. W computes the return value as a function of the information returned from X and Y ,and sends a reply containing this value to X . W then ends frame W1, restoring W0 asthe current frame.8.2 A Named-Threads SolutionThis example can be used to illustrate the named-threads technique as well. Objects will beannotated with their current owner: \X [t:1]" implies that object X is owned by thread t:1.1. X [x] calls W [], invoking method do-query. This leads to W [x].10The port binding map B would contain additional entries if the current call is part of a larger call chain. Forclarity, only those entries relevant to the calls in the depicted graph fragment are listed.

172. W [x] concurrently calls X [x] and Y []. The message to X [x] has an id of x:1, and themessage to Y [] has an id of x:2.3. Concurrently:(a) Y [] receives the call from W [x]. Note that W is owned by x but the calling threadis x:2. This implies Y [x:2]. The result is calculated and returned to W [x]. After thereply, Y is again unowned, that is, Y [].(b) X [x] receives the call (with message id x:1) from W [x]. This is a recursive call.Since x, the current owner of X , is an ancestor of the calling thread, x:1, the call isaccepted. The current owner, x, is pushed on to ownerStack, and x:1 becomes thenew owner. X [x:1] replies to W [x], and the previous owner is popped o� the stack.This implies X [x].4. W [x] receives the replies from X and Y .5. W computes the return value of do-query based on the replies. The result is returned toX [x], and W is again unowned. The ownership is then: X [x], Y [], and W [].9 Analysis and ComparisonThe multi-ported object and named-thread solutions a�ect the underlying system in three majorareas: maintenance of a call stack, overhead for message sending and message acceptance, andan increase in message length. The impact is negligible when using only sends, but may besigni�cant in the presence of blocking calls.A send message incurs negligible overhead because there is no call stack, little extra workfor handling messages, and no increase in message length. For the case of blocking calls, eachobject maintains a stack of pending calls. In the multi-port solution this is the stack of frames,while in the named-threads solution, it is the stack of owners. For general recursion, the size ofthe pending call stack is unbounded. The height of the stack at X depends on the number ofrecursive calls in the call chain, that is, the number of calls toX . For single-object recursion, thisis the depth of the call chain, while for multiple-object recursion the height will be smaller thanthe length of the call chain. The stack is not a side e�ect of these solutions; it is fundamental torecursion. Just as a stack supports recursive procedures in conventional sequential languages,the stacks used here support recursive call messages.

18 9 ANALYSIS AND COMPARISON9.1 Comparative OverheadFor the general case, is it useful to de�ne two metrics for call chains: object depth and splitdepth. The object depth is the number of distinct objects in a call chain. Thus, if X calls Ycalls Z, the object depth is three, while if X calls Y calls X , the object depth is two. Thesplit depth measures the number of splits in a call chain. An unsplit thread is de�ned to havea split depth of one. Thus if X calls Y , the split depth at Y is one, while if X concurrentlycalls Y and Z, the split depth at Y is two (one for the original thread and one for the split atX). Using the named-threads notation introduced in section 7, the split depth is the numberof �elds in the id: \x:1:2" has a split depth of three.The solutions di�er in the performance of choosing destinations for calls and acceptingmessages. For multi-ported objects, choosing a destination for a call requires scanning the portbinding map to identify the exact destination. The average time for this scan is proportionalto the length of the port binding map, which is the same as the object depth of the callchain. Thus the time for locating the destination is proportional to the object depth.11 For thenamed-threads solution, the destination is known and the cost is constant.The cost of message acceptance has a dual behavior. The multi-port solution checks thevalidity of the port with a single comparison. The named-threads solution must compare theid of the message and the id of the owner. In the worst case, this comparison is proportionalto the length of the owner id. Since the length of the owner grows with each split, the cost ofthe acceptance test is proportional to the split depth. Note that if the object is unowned, themessage is a send, or the id starts with a di�erent object, then the test completes immediately.In summary, the multi-port solution requires time proportional to the object depth for choosinga destination, but can accept messages in constant time. On the other hand, the named threadssolution requires time proportional to the split depth for accepting a message, but can locatemessage destinations in constant time.Message length is also a�ected di�erently by the two solutions. For multi-ported objects,the message is extended by the port binding map: the length of the extension is proportional tothe object depth. For named threads, the message is extended by the id of the calling thread:the length of the extension is proportional to the split depth.11More complex data structures, such as hash tables, could reduce this lookup to constant time asymptoti-cally. However, this would probably be worse in practice due to both higher constant factors and larger spacerequirements.

9.2 Example Calling Patterns 19
X

X

Y Z

X

Y

X 1

X 2

X 3

X k

(a) (b) (c) (d)Figure 2: Calling patterns for comparing object depth and split depth. Arrows denote calls,and arcs joining arrows signify concurrent calls.9.2 Example Calling PatternsSince the performance of the multi-port solution depends on object depth and that of thenamed-threads solution depends on split depth, their relative merit depends on the call chainsencountered in a given system. Several possible call chains are shown in Figure 2.The most common case of recursion is direct recursion, represented by the call chain inFigure 2(a). Only one object and one thread are involved, so both the object depth and thesplit depth are one. Both solutions have low overhead for this case.A more general form of recursion is shown in Figure 2(b). The call chain is a cycle of kobjects. For k = 2, this reduces to simple mutual recursion. Since there are k objects involved,the object depth is k, regardless of how many times the call chain loops around the cycle. Sincethere are no concurrent calls, the split depth is one. Note that the overhead is the same if thelast call is not recursive; the split depth is one and the object depth is k. The overhead for themulti-port solution is proportional to k, while the overhead for the named-threads solution isconstant. The named-threads approach is superior when there are many objects involved andfew concurrent calls.The multi-port solution is superior in the opposite case: few objects and many concurrentcalls. Figure 2(c) depicts a call chain with only two objects, each of which makes a pair ofconcurrent calls. This kind of call tree might occur in a system that processes data structureswith two di�erent types of nodes. For example, consider a computation applied to a binarytree, in which X handles all of the right nodes and Y handles all of the left nodes. Becausethere are only two objects involved, the object depth is two, regardless of the height of the call

20 10 CONCLUSIONStree. Performance is much worse for the named threads solution. After k pairs of concurrentcalls, the split depth is k for threads that are the leaves of the call tree. Thus, the overheadfor the multi-port technique is constant, while the overhead for the named-threads solution isproportional to k.In summary, the relative overhead of these solutions depends on the ratio of object depthto split depth. Systems with recursion among small groups of objects and many concurrentcalls would perform better using the multi-ported object technique. Systems with recursionamong many objects and few concurrent calls would perform better using the named-threadstechnique. In many applications, call chains involve few objects and few concurrent calls, inwhich case both solutions perform well.9.3 A Hybrid Model: Di�erentiating Recursive CallsSince the additional overhead in the proposed solutions stems from the requirements of recursivecalls, it may be useful to di�erentiate calls that are allowed to recurse from those that are not.Note that if a call is not allowed to recurse, the situation is identical to current object systemswith one exception: non-recursive calls must propagate the recursion information if performedin response to a call that is allowed to recurse. This mixed model yields better performancewhen a programmer (or compiler) is certain that recursion cannot occur. However, deadlockresults if a \non-recursive" call does recurse.9.4 General Object DeadlockAlthough the techniques presented eliminate deadlock due to recursion, the general deadlockproblem remains quite serious. Figure 2(d) depicts a call chain that may lead to deadlock.Object X concurrently calls objects Y and Z, which in turn call each other. Deadlock occurs ifY is blocked waiting on Z and Z is blocked waiting on Y . In this case, deadlock can be avoidedby serializing the calls at X . Unfortunately, avoiding deadlock in general is quite di�cult.Thus, although blocking calls provide clean, simple semantics, it is generally safer to use sendswherever possible. But using sends without eliminating blocking is no better than using calls;the fundamental problem is blocking.10 ConclusionsCurrent object systems place severe limits on the use of recursion, reducing expressive power.The two techniques presented allow fully general recursion in a manner that is transparent to

21the user. The multi-port solution uses ports to distinguish recursive calls, placing the burdenon the sender to identify the correct port. The named threads solution names each path inthe call tree, encoding ancestors in the name. The test for ancestry is used to detect recursivecalls, placing the burden on the receiver to identify ancestors. The relative overhead of thesesolutions is dependent on application call graphs, in particular, on the ratio of object depth tosplit depth. Call graphs with many objects and relatively few concurrent calls perform betterwith the named-threads solution, while the multi-port solution leads to better performance inthe opposite case.Recursion is a powerful and important programming technique that causes deadlock inmost concurrent object-oriented systems. The solutions presented in this paper provide simple,e�ective system-level support for general recursion. They can be used by designers and imple-mentors of concurrent object-oriented systems to avoid severe restrictions on the expression ofrecursion.11 AcknowledgementsWe are grateful to Barbara Liskov, William Weihl, Adrian Colbrook, Chris Dellarocas, SanjayGhemawat, Bob Gruber, Wilson Hsieh, Ken Kahn, and Paul Wang for their comments andassistance.References[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MITPress, Cambridge, MA, 1986.[Ame87] Pierre America. POOL-T | A Parallel Object-Oriented Language. In AkinoriYonezawa and Mario Tokoro, eds., Object-Oriented Concurrent Programming, MITPress, 1987.[Bos89] Jan van den Bos and Chris La�ra. PROCOL: A Parallel Object Language with Pro-tocols. Proceedings of the Fourth ACM Conference on Object-Oriented ProgrammingSystems, Languages, and Applications (OOPSLA '89), October 1989.[Chi90] Andrew A. Chien. Concurrent Aggregates (CA): An Object-Oriented Language forFine-Grained Message-Passing Machines., PhD thesis, Massachusetts Institute ofTechnology, July 1990.[Dal87] William J. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Aca-demic Publishers, 1987.

22 REFERENCES[Gli80] Virgil D. Gligor and Susan H. Shattuck.On Deadlock Detection in Distributed Systems.IEEE Transactions on Software Engineering 6(5): 435-440, September 1980.[Gol83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementa-tion. Addison-Wesley, Reading, MA, 1983.[Had77] Bruce K. Haddon. Nested Monitor Calls. Operating Systems Review, vol. 11, no. 3,October 1977.[Kah87] Kenneth Kahn, Eric Dean Tribble, Mark S. Miller, and Daniel G. Bobrow. Vulcan:Logical Concurrent Objects. In Ehud Shapiro, Concurrent Prolog: Collected Papers,MIT Press, 1987.[Kah89] Kenneth Kahn. Objects: A Fresh Look. Proceedings of the Third European Conferenceon Object-Oriented Programming (ECOOP '89), Cambridge University Press, July1989.[Lie86] Henry Lieberman. Using prototypical objects to implement shared behavior in object-oriented systems. Proceedings of the First ACM Conference on Object-Oriented Pro-gramming Systems, Languages, and Applications (OOPSLA '86), September 1986.[Lie87] Henry Lieberman. Concurrent Object-Oriented Programming in Act1. In AkinoriYonezawa and Mario Tokoro, eds., Object-Oriented Concurrent Programming, MITPress, 1987.[Lis87] Barbara Liskov. Implementation of Argus. Proceedings of the 11th ACM Symposiumon Operating Systems Principles, November 1987.[Lis88] Barbara Liskov. Distributed Programming in Argus. Communications of the ACM, vol.31, no. 3, March 1988.[Lis77] Andrew Lister. The problem of nested monitor calls. Operating Systems Review, vol.11, no. 2, July 1977.[Man87] Carl R. Manning. Acore: The Design of a Core Actor Language and its Compiler.Master's thesis, Massachusetts Institute of Technology, August 1987.[Sin89] Mukesh Singhal. Deadlock Detection in Distributed Systems. IEEE Computer, Novem-ber 1989.[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, MA,1986.[Tom89] Chris Tomlinson and Vineet Singh. Inheritance and Synchronization with Enabled-Sets. Proceedings of the Fourth ACM Conference on Object-Oriented ProgrammingSystems, Languages, and Applications (OOPSLA '89), October 1989.[Yon87] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, and Yasuaki Honda. Mod-elling and Programming in an Object-Oriented Concurrent Language ABCL/1. In Aki-nori Yonezawa and Mario Tokoro, eds., Object-Oriented Concurrent Programming,MIT Press, 1987.

