
Prototyping a Hybrid Main Memory
Using a Virtual Machine Monitor

Authors

© 2008 Rambus Inc.

Authors

Dong Ye§, Aravind Pavuluri*, Carl Waldspurger*

Brian Tsang¥, Bohuslav Rychlik¥, Steven Woo¥

§Northeastern University, *VMware, Inc., ¥Rambus, Inc.,

Presented at ICCD by

Brian Tsang

10-13-08

Contents

• Introduction

• VMM-based Model

• Experimental Method

© 2008 Rambus Inc.

• Experimental Method

• Case Study Results

• Limitations

• Conclusions

Introduction

• Virtualization typically used for:

1. Consolidate servers

2. Enhance security

3. Centralize Desktop

• We use virtualization to do

© 2008 Rambus Inc.

• We use virtualization to do
performance modeling…

• Why?

1. Fast evaluation speed

2. Freedom in target workload

3. Complete execution

Case Study:
“Analyze Hybrid Main Memory System”

• Memory technologies such as flash may present opportunity to plug the
gap between DRAM and disk in the memory hierarchy

Latency (in CPU clocks) Bandwidth Cost Access Size

Registers 1 Very high $$$$$$ 4-8B

L1 Cache 1-2 Very high $$$$$ 16-32B

L2 Cache 4-12 High $$$$ 64-128B

DDR3 1600 120-1000 Medium $$$ 4-32B

© 2008 Rambus Inc.

• We generalize to any multi-tier main memory system

NEED MULTI-TIER MEMORY ARCH DIAGRAM HERE

(can use the one from paper with clearly marked M1 and M2)

Example:

Flash Memory
~1,000,000 ? $$?

Disk >15,000,000 Low $ 512B-4KB

VMM-based Model

We modify the VMM as follows:

• Mark each memory pages as either “in M2”
or “in M1” Read BW

M1 1st Touch

VMware ESX VMM is well-suited to model a hybrid main memory:

� Already contains an extra level of memory indirection

� Has a general purpose memory protection mechanism called tracing

© 2008 Rambus Inc.

or “in M1”

• Install custom trace handler which fires
upon access of any page “in M2”

• Insert a delay based on:
Read Latency & BW

Write Latency & BW

Write Buffer Size

Inclusive/Exclusive caching

• Mark page as now “in M1”

• Mark random victim from M1 as “in M2”

M2
Write
Buffer

Write BW
Write latency

Read BW
Read Latency

Random
Eviction

M2

Experimental Method

M1+M2 memory size = each benchmark’s working set size
Baseline performance: M1 = working set size

M2 = 0
Benchmarks

Enterprise Computing
• 64b Linux - Oracle DB (640 MB)

70%

80%

90%

100%

© 2008 Rambus Inc.

• 64b Linux - Oracle DB (640 MB)
• 32b Linux - SPEC JBB (384 MB)

Desktop productivity
• 32b Win - Business Winstone ‘02

(128MB)

Technical computing
• 32b Linux - Deal II (SPEC 2006) (448 MB)
• 32b Linux - MCF (SPEC 2006) (320 MB)
• 32b Linux - Kernel Compile (192 MB)

0%

10%

20%

30%

40%

50%

60%

0 200 400 600 800 1000 1200 1400

KC
JBB
DB
Deal2
MCF
WinB

PUT AXIS LABELS DIRECTLY ON GRAPH

M2 Latency
Latency: 0µs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Latency: 4µs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

© 2008 Rambus Inc.

Latency: 40µs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Latency: 400µs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Most benchmarks can handle a 40 µs latency
even when M2 is 50% of total memory size

PUT LABELS ON AXES

INCLUSIVE OR EXCLUSIVE?

BE READY FOR THIS QUESTION

M2 Bandwidth

100% 10 MB/sec 100% 10 MB/sec100% 10 MB/sec 100% 10 MB/sec

KC 60% 80% 90%

AVG 4.72 19.0 75.9

PEAK 79.3 83.9 171

DB 60% 80% 90%

AVG 0.13 0.9 44.8

PEAK 19.4 36.8 195

JBB 60% 80% 90%

AVG 191 296 357

PEAK 389 479 471

Deal2 60% 80% 90%

AVG 16 80 256

PEAK 370 516 476

• Wide variety in M2 bandwidth demand (5MB/s – 500 MB/s)

• As M2 fraction increases, the demand for M2 bandwidth increases

• Diminishing returns beyond 640 MB/s BW limit

© 2008 Rambus Inc.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 80% 90%

10 MB/sec

40 MB/sec
160 MB/sec

640 MB/sec

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 80% 90%

10 MB/sec

40 MB/sec
160 MB/sec

640 MB/sec

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 80% 90%

10 MB/sec

40 MB/sec
160 MB/sec

640 MB/sec

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 80% 90%

10 MB/sec

40 MB/sec

160 MB/sec

640 MB/sec

Write BW limit must be >2X average
write BW to prevent performance loss

X-axis- Each group is a specific % of M2

-Within each group are varying M2 bandwidth limits

Y-axis -normalized performance

M2 Write Buffering

50%

60%

70%

80%

90%

100%

50%

60%

70%

80%

90%

100%

• Modest write buffering effectively hides even long M2 write latency

© 2008 Rambus Inc.

256 page buffer hides 2000 µS of write latency

64 page buffer hides 1000 µS of write latency

16 page buffer hides 100 µS of write latency

10
100

1000
2000

1

4

16

32
64

256

0%

10%

20%

30%

40%

KC

10
100

1000
2000

1

4

16
32

64
256

0%

10%

20%

30%

40%

Deal2

LABELS ON AXES!

Limitations
M2 memory access in hybrid memory systems

• Overhead -The time it takes for the
program to enter the trace handler

CPU ProcessingHypervisor EmulationL1 L2 Cache DRAM

Hypervisor Overhead Read Latency/BW Delay Hypervisor OverheadWrite Latency/BW Delay with Buffer Overtime

CPU Processing

Slowdown vs Latency

@ 75% M2

KC

SPECJBB
SwingBench

Deal2
MCF

© 2008 Rambus Inc.

• Difficult to quantify

• Overtime – Occurs when incurred
delay is greater than desired. Most
common with low M2 latency settings

• Minimum observable latency:

• For high bandwidth benchmarks,
it is 4 µs.

• For low bandwidth benchmarks, it
is ~10 µs

1

10

100

1000

1 10 100 1000

Latency (µs)

S
lo

w
d

o
w

n
 d

u
e
 t

o
 M

2

MCF

Key Results

• Demonstrated use of virtualization platform for
computer architecture performance modeling

• Full workload simulation at high speed

• Workloads spanning multiple operating systems

• Modest additional development

• Some limits on explorable design space

© 2008 Rambus Inc.

• Some limits on explorable design space

• Case Study: Hybrid Memory System

• Wide variety in benchmark sensitivity to M2 read latency

• Modest write buffering hides very long M2 write latency

• Only certain workloads are amenable to hybrid memory
systems, when total memory is tightly provisioned

���� Real systems not usually as tightly provisioned

Q & A?

• If you have questions, feel free to contact me

btsang@rambus.com

© 2008 Rambus Inc.

Backup

© 2008 Rambus Inc.

Assumptions

M1

M2

1st Touch

Our assumptions :

1. CPU only uses memory from M1
On first touch, memory from M2 must be
moved to M1

2. Reads and writes will not have the same
performance

3. To mitigate the impact of slow writes, a

© 2008 Rambus Inc.

CPU Processing

M2
Write
Buffer

CPU Processing L1 L2

M2 access emulation performed inside VMM

M1 (DRAM) memory access

L1 L2 M1

M1

M2 memory access in hybrid memory systems

Random
Eviction

CPU Processing

CPU Processing

3. To mitigate the impact of slow writes, a
write buffer would be implemented

4. Flash is accessed in units of the
architecture pagesize (4KB)

5. A random page is evicted from M1

Measuring performance

1. Configure VM

2. Run the benchmark

3. Record relevant metrics and statistics

• Execution time is measured through an external time
source

• Benchmarks may report performance by rate or by

© 2008 Rambus Inc.

• Benchmarks may report performance by rate or by
execution time

4. Compare metrics to the baseline configuration

• Baseline configuration- “M1 only” specifically sized for the
benchmark

The host machine runs only 1 VM bound to a
dedicated host processor core with ample memory

