

Abstract — We use a novel virtualization-based approach for
computer architecture performance analysis. We present a case
study analyzing a hypothetical hybrid main memory, which
consists of a first-level DRAM augmented by a 10-100x slower
second-level memory. This architecture is motivated by the
recent emergence of lower-cost, higher-density, and
lower-power alternative memory technologies. To model such a
system, we customize a virtual machine monitor (VMM) with
delay-simulation and instrumentation code. Benchmarks
representing server, technical computing, and desktop
productivity workloads are evaluated in virtual machines
(VMs). Relative to baseline all-DRAM systems, these workloads
experience widely varying performance degradation when run
on hybrid main memory systems which have significant
amounts of second-level memory.

I. INTRODUCTION
Current uses of PC-based virtualization have included

server consolidation, enhanced security, and desktop
centralization [20]. In this work we explore a new role for
virtualization: performance modeling and analysis of new
computer architectures. This has conventionally been done
using software simulators, which typically offer great
modeling flexibility at the cost of simulation speed [21].

A virtual machine monitor (VMM) is similar to a software
simulator by providing an execution environment to run
software. A VMM achieves higher performance by
interposing only when necessary to manage privileged
machine state and typically requires that the guest operating
system and host machine share the same instruction set. This
restricts the breadth of computer architectures that can be
analyzed by a VMM-based tool. Nevertheless, for some
scenarios, the combination of evaluation speed, freedom in
target workload, and complete execution is attractive. We
identify one such scenario and perform a case study.

We target a hybrid main memory system featuring an
additional level of memory inserted into the traditional
memory hierarchy between DRAM and disk. This choice is
motivated by two factors. First, recent memory technology
developments offer some lower-cost, higher-density, and
lower-power alternatives/complements to DRAM. Second,
the software-based memory virtualization implemented in
VMMs appears well-suited to model a hybrid main memory.

The rest of the paper is organized as follows. Section II
reviews relevant trends in computing, memory technologies,
and virtualization. Section III describes the architecture of a
generic hybrid main memory and its performance model.
Section IV describes our experimental method. Section V

presents quantitative performance data, which is analyzed
and discussed in Section VI. We summarize related work in
Section VII and give our conclusions in Section VIII.

II. BACKGROUND

A. Processor and Computing Trends
The power and thermal challenges faced when improving

single-core processor performance are driving a shift to
multi-core systems. These multi-core systems support more
simultaneous applications and their memory working sets,
thereby increasing pressure on system memory capacity. One
way to cost-effectively address the need for capacity is to
introduce a new layer in the memory hierarchy between
DRAM and disk. Such a layer would bridge the five orders of
magnitude performance gap between DRAM and disk, while
offering a middle-ground cost structure.

B. Alternative Memory Technology Trends
Several current and emerging memory technologies (e.g.,

NAND flash, NOR flash and Phase Change Memory) possess
characteristics making them candidates for this new memory
layer. As an example, we compare the advantages and
disadvantages of NAND flash with DRAM. Table 1 shows
the density of DRAM and NAND flash over the next few
years as predicted in the ITRS 2007 roadmap [12]. Table 2
compares DRAM and NAND flash in cost, performance,
power consumption, and endurance. Over the next 10 years,
NAND flash will consume 10x less active power and 100x
less standby power, command 10x more density, and cost
4-8x less than DRAM. However, NAND flash is 10-100x
slower than DRAM in access latency and data transfer rate,
and has asymmetric read and write speeds (writes are 10x
slower than reads). Furthermore, NAND flash must be
accessed at a page granularity of up to 16KB, and each page
can only be written a limited number of times.

Although our study is guided in part by the salient
characteristics of NAND flash, our method is not restricted to
this technology. Rather, we allow a range of parameters for
the hybrid memory, applicable to other technologies.

Dong Ye†, Aravind Pavuluri‡, Carl A. Waldspurger‡
Brian Tsang§, Bohuslav Rychlik§, Steven Woo§

†Northeastern University, ‡VMware, Inc., §Rambus, Inc.
†dye@ece.neu.edu, ‡{apavuluri,carl}@vmware.com, §{btsang,brychlik,swoo}@rambus.com

Prototyping a Hybrid Main Memory Using a Virtual Machine Monitor

Table 1: ITRS 2007 roadmap for DRAM and NAND flash

Gbits/cm2 2007 ’08 ’09 ’10 ’11 ’12 ’13 ’14 2015

DRAM 2.31 2.91 3.66 4.62 5.82 7.33 9.23 11.63 14.65

Flash SLC 5.97 8.44 10.60 13.40 16.90 21.30 26.80 33.80 42.50

Flash MLC 11.90 16.90 21.30 26.80 33.80 42.50 53.60 67.50 85.10

C. ESX Server Software VMM
We implement the performance model of hybrid main

memory by customizing the VMM component of a VMware
ESX Server hypervisor [27]. Two existing features facilitate
our implementation. First, an extra level of memory
indirection exists in the VMM which translates guest physical
addresses to host physical addresses used to access hardware
[28]. The VMM manages the allocation and mapping of guest
physical memory by maintaining metadata for each guest
physical page. In simulating a hybrid main memory, we
enhance this metadata to track an extra attribute for each
guest physical page indicating whether it is of DRAM type or
of alternative memory type. Second, the VMM implements a
general-purpose memory protection mechanism called
tracing. Upon accessing a trace-protected guest physical
page, execution is directed to a designated handler in the
VMM [1]. We employ a custom trace that triggers on
accesses to alternative memory pages. The custom trace
handler simulates the desired timing and collects statistics.

III. ARCHITECTURE

A. Hybrid Main Memory System
Figure 1 shows the conceptual organization of a hybrid

main memory system similar to the multi-level memory
system proposed in [7, 8]. Since our exploration is similar in
spirit, we adopt the terminology used in [8]: a second-level
memory M2, comprising the alternative memory devices,
augments a first-level memory M1 of conventional DRAM.
We assume that an entire page is always transferred from M2
to M1 before any of its data is accessible to the CPU.

Many different mechanisms could be employed to manage
the mapping and movement of memory pages between M1
and M2 including both hardware and software techniques.
Some of the possibilities include specialized memory
controllers, a new OS-level memory management
component, or a new hypervisor-level memory virtualization
component. Exploration in this direction is beyond the scope
of this paper. We instead focus on characterizing first-order

performance implications of such a system using a
VMM-based performance evaluation method.

B. Performance Model
In establishing the performance model of hybrid main

memory systems, we focus on the time penalty of M2
accesses. Our platform takes the following actions on each
M2 page access: (1) The previously-installed custom trace
handler is triggered. (2) A victim M1 page is chosen
randomly across the entire physical memory space. (3) M2
write latency is optionally incurred to account for transferring
the victim M1 page to M2. (4) M2 read latency is incurred. (5)
Additional delay is optionally incurred to reflect read/write
bandwidth limits. (6) The M1/M2 markings of the victimized
and faulted pages are swapped and so are their trace
associations. No actual exchange of content is performed.
While more sophisticated victim selection policies such as
LRU are likely to perform better, our choice of random
replacement provides a conservative baseline.

We provide several parameters for configuring the hybrid
memory system simulated by our performance model:
• VM total memory size and M2 fraction of total memory.
• Read latency: Time to access and transfer one page from

M2 to M1. It is incurred upon an M2 access.
• Write latency: Time to transfer one page from M1 to M2.

It is incurred upon an M2 access unless it is hidden by the
write buffer or when the M1 victim page is unmodified
under an inclusive caching organization.

• Read bandwidth: Read bandwidth limit is specified via
two values, a time window (LR) and a maximum number
of read operations (MR) allowed within the time window.
Two state variables are maintained: counter (CR) and
timestamp (TSR). CR starts from 0, increments upon each
M2 access, and returns to 0 at MR. TSR records the time
corresponding to the M2 access when CR = 0. When CR =
MR, we delay until the time elapsed since TSR equals LR,
and reset CR and TSR.

• Write bandwidth: Same as above but on the write side.
• Write buffer: Modeled by a ring buffer. Each buffer slot

keeps a timestamp, recording the time when this slot is
used to hold the content of a victim M1 page. When a M1
page is victimized, if a write buffer slot is available, then
no delay is incurred. Otherwise, we delay until the time
elapsed since the oldest timestamp equals the write
latency (i.e., the oldest buffer slot becomes available.)

• Caching: Two organization alternatives are modeled. If
M1 and M2 operate as an exclusive hierarchy, any M1
victim pages must be written to M2. In an inclusive
hierarchy, each M1 page is backed up in M2, so only

Table 2: Cost, performance, power, and reliability comparison between DRAM and NAND flash

 Erase Time Write Time Read Time Data Rate (Write) $ Cost Capacity/Chip Active Power/Chip Standby Power/Chip Write Endurance
DRAM N/A <100ns <100ns 800MB/s ~$2/Gb 1Gb ~500mW ~mW ∞

SLC 2ms 200µs 25µs 10+MB/s $0.9/Gb 8Gb 80mW 50µW 105

MLC 2ms 800µs 50µs 10MB/s $0.3/Gb 16Gb 80mW 50µW 104

M1 (DRAM)

M2 (Alternatives)

CPU

Figure 1: A computer system featuring hybrid memory

modified M1 pages must be written to M2.
• Sampling frequency: M2 access statistics are logged and

reset periodically. Two choices of this sampling
frequency are supported: 1Hz and 10Hz.

IV. EXPERIMENTAL METHOD

A. Experimental Setup
We measure the performance of complete systems

consisting of unmodified applications running on
unmodified, commodity operating systems. The experimental
process involves the following steps for each application and
configuration: (1) Configure a VM for the performance
model described in III.B. (2) Start the VM on the custom
virtualization platform. (3) Run the application to its
completion in the guest OS. (4) Shut down the VM making
sure to record the relevant metrics and access statistics.

For each application under investigation, we measure an
appropriate application-specific performance metric. We
establish a baseline VM for each application: this is an
M1-only system where the VM guest memory is specifically
sized to the application. In most cases, this moderately
exceeds the memory footprint. The memory footprint is the
memory size of a VM that runs the application and guest OS
without noticeable paging activity; while halving it would
result in substantial disk paging.

For each hybrid main memory configuration, we report the
normalized performance of applications relative to their
performance on baseline VMs. Note that we measure
wall-clock execution time using an external time source. This
is necessary since under heavy load, the VMM may distort
the precise timing of guest timer interrupt delivery [26],
which is exacerbated by our introduction of substantial M2
delays.

To minimize the variations introduced by hypervisor
activities as well as concurrently-executing VMs, we ensure
that the host processor and memory are under-committed
when carrying out our experiments. First, we run only one
VM at a time. Second, the host is configured with ample
memory (8GB). Third, all experimental VMs are configured
with a single virtual CPU bound to a dedicated host processor
core.

B. Benchmarks
We use benchmarks representative of server, technical

computing, and desktop productivity workloads. Table 3

catalogs their memory footprints, baseline VM memory sizes,
and the guest operating systems.

We represent server workloads using a database (DB) and
a Java-based business-logic (JBB) benchmark. We use
Swingbench [10] as the database client and load generator to
drive and test an Oracle 10g database server running inside a
64-bit Linux VM. The Swingbench client process runs on a
native Windows XP system and sends requests over the local
network to the Oracle 10g database server. We use the
transactions-per-second metric reported by the Swingbench
client. SPECjbb2005 represents the middle tier of a three-tier
client/server system with emphasis on components such as
the JVM [22]. It calculates a business-operations-per-second
(bops) value. We use this as its performance metric, re-scaled
appropriately to the wall-clock execution time. The
benchmark runs inside a 32-bit Linux VM provisioned with a
BEA Jrockit 1.6.0 JRE.

Kernel compilation (KC), Deal2, and MCF are technical
computing workloads. Kernel compilation builds the Linux
kernel from vanilla Linux 2.6.21 source code. Deal2 and
MCF are from the SPEC CPU2006 suite [23], both featuring
significant memory footprints and changing memory demand
over time. All are run inside a 32-bit Linux VM and execution
speed is reported (inverse of execution time).

Business Winstone 2002 (WinB) is a desktop productivity
benchmark representing real-world office usage [9]. In a
single run, a session of operations with Word, Excel,
PowerPoint, Access, FrontPage (all from Microsoft Office),
Netscape, Microsoft Project, Norton Anti-Virus, and Lotus
Notes is performed. The scripted session is tailor-made to
include effects such as user wait time. It runs inside a 32-bit
Windows XP VM. Since this workload performs the same
operations during each run, we use its execution speed
instead of a suite-specific score as its performance metric.

V. RESULTS

A. Performance Sensitivity to VM Memory Size
Figure 2 shows application performance with respect to the

VM memory size. A key observation is that application
performance is largely a make-or-break case with respect to
the total memory size. The performance-sensitive range is

Table 3: The benchmarks

Name Workload Footprint Baseline VM Guest OS

DB Oracle 10g / 800MB 1024MB 64-bit Linux

JBB SPECjbb2005 400MB 512MB 32-bit Linux

KC Kernel Compilation 300MB 512MB 32-bit Linux

Deal2 SPEC CFP2006 500MB 512MB 32-bit Linux

MCF SPEC CINT2006 900MB 1536MB 32-bit Linux

WinB Business Winstone 128MB 512MB* 32-bit Windows

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 200 400 600 800 1000 1200 1400

KC
JBB
DB
Deal2
MCF
WinB

Figure 2: Performance sensitivity to memory size on a M1-only system.
X-axis is VM memory size (MB). Y-axis is normalized performance (relative
to baseline VMs).

also quite narrow: Once the VM memory size exceeds the
footprint of a workload, additional memory yields little
performance benefit. These results guide our baseline VM
memory sizing for all applications except WinB. Unlike other
applications, WinB’s footprint (128MB) is smaller than
typical systems running Windows XP. To remain consistent
with typical systems, we sized the baseline VM for WinB at
512MB.

B. Performance Impact of M2 Latency
In Figure 3, we plot the benchmarks’ performance

sensitivity to M2 fraction and M2 latency. The benchmarks
exhibit widely-varying tolerance to these parameters. A
hybrid memory of 25% M2 (40µs read latency) causes less
than 5% performance degradation to all the benchmarks. DB
exhibits a high level of tolerance to both large M2 fractions
and long M2 read latencies—a 60% M2 with 400µs read
latency yields only 7% performance degradation. KC and
Deal2 show medium tolerance to M2 latency, while JBB and
MCF suffer even under a modest M2 fraction. WinB shows
similarities with both M2-sensitive and M2-insensitive
applications depending on the M2 latency.

C. Performance Impact of M2 Bandwidth
In Figure 4, we plot the performance sensitivity to M2

bandwidth by varying the bandwidth limit (assuming zero M2
latencies). We also report the average and peak demand for
M2 bandwidth (using 10Hz sampling) when the application is
not constrained.

It is not surprising to see that demand for M2 bandwidth
(i.e., M2 access throughput) increases as the specified M2

Latency: 0µs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Latency: 4µs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Latency: 40µs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Latency: 400µs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

KC
JBB
DB
Deal2
MCF
WinB

Figure 3: Performance impact of M2 read latency. Each subfigure evaluates a particular value of M2 read latency. X-axis is M2 fraction. Y-axis is
normalized performance (relative to baseline VMs).

KC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60%
AVG = 4.72
PEAK=79.34

80%
AVG =19.0
PEAK=83.9

90%
AVG = 75.9
PEAK=171.1

10 MB/sec
40 MB/sec
160 MB/sec
640 MB/sec

JBB

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60%
AVG =191
PEAK=389

80%
 AVG =296
PEAK=479

90%
AVG =357
PEAK=471

10 MB/sec
40 MB/sec
160 MB/sec
640 MB/sec

DB

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60%
 AVG = 0.13

PEAK=19.4

80%
 AVG = 0.9
PEAK=36.8

90%
 AVG = 44.8
PEAK=195.4

10 MB/sec
40 MB/sec
160 MB/sec
640 MB/sec

Deal2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60%
 AVG = 16
PEAK=370

80%
 AVG = 80
PEAK=516

90%
AVG =256
PEAK=476

10 MB/sec
40 MB/sec
160 MB/sec
640 MB/sec

Figure 4: Performance impact of M2 bandwidth capacity. Each subfigure
evaluates one benchmark. X-axis is M2 fraction (commented with
application’s demand for M2 bandwidth, both average and peak, in MB/s).
Y-axis is normalized performance (relative to baseline VMs). It is noted that
performance under 640MB/s is indistinguishable from that under unlimited
bandwidth. MCF graph is omitted as it demonstrates a very similar pattern
as JBB.

fraction increases. Yet, the extent to which an M2 bandwidth
limitation can influence performance is benchmark-specific:
JBB is much more sensitive to M2 bandwidth limitation than
KC and DB.

As described in Section III.B, a bandwidth limit is enforced
at a parameterized time window. All bandwidth values in
Figure 4 are enforced using a 10ms window.

D. Effectiveness of Write Buffers
The long write latency of some candidate M2 memory

technologies makes their viability questionable. A natural
approach to accommodate slower writes is write buffering.
Comparing the two subfigures of Figure 5, we can see that a
modestly-sized write buffer of 64 pages effectively hides
write latencies as long as 1ms. Hence, write latency is not
necessarily a problem in the hybrid main memory system.

E. Utility of Inclusive Caching
Some potential M2 memories support only a finite number

of writes over their lifetime. To reduce writes, we
experimented with inclusive- as well as exclusive-caching
policies. Under inclusive caching, only dirty M1 victim pages
are written back to M2. However, we observe only modest
write savings with this approach (1-20%) for 75% M2
fraction, suggesting limited utility of this technique.

VI. DISCUSSION

A. Measurement versus Simulation
A prototyping tool is valuable in the exploratory stage of

new system designs. Developing such a tool is often a
balancing act, trading off details, speed, flexibility and
workload support. For example, Ekman et al. [7] used a
complex methodology employing simulation, direct
measurement of native execution, and various extrapolations.

Virtualization offers an interesting alternative to address
this problem. We have demonstrated the capability of a
VMM-based tool to run a variety of full workloads to
completion in real time. We were also able to explore a large
evaluation space simply by changing VM settings. Thus,
within the constraints of our chosen scenario, we achieved a
blend of evaluation speed and flexibility. In the following
sections, we validate the timing accuracy of our approach.

B. Measurement Bias
Since we measure wall-clock execution time, we must

ensure that the impact of non-guest components included in
the wall-clock execution time doesn’t distort the comparisons
between executions of the same guest code under different
configurations. Non-guest components include synchronous
VMM code (trace delivery cost), asynchronous hypervisor
activities (virtualization, scheduling, etc.), as well as M2
access simulation/instrumentation code.

We expected minimal environmental disturbance (e.g.,
cache pollution) due to the modest footprint of simulation
code and data (<200 lines of C code and ~4KB of internal

states). We also expected minimal disturbance from
asynchronous hypervisor activities, given our tight control
over the host and the experiment environment. The left part of
Figure 6 exhibits a linear relation between the application
slowdown and M2 access latency, validating the expectation
of minimal environmental disturbance affecting guest
execution and suggesting a fixed trace delivery overhead.

However, in the right part of Figure 6, we observe that as
our target latencies drop below 10µs, the plots are no longer
linear. We suspect this is because the actual induced latency
exceeds the specified latency, due to trace delivery and
instrumentation overhead. Hence, our platform tends to
overestimate the slowdown for small M2 latencies of a few
microseconds. We confirm this limitation of our platform by
adding instrumentation to count overtimes. Overtimes occur
when our inserted simulation and delay calculation code takes
longer to execute than the specified latency. We confirmed
that overtimes occur most frequently for latencies below 4µs,
and almost never for latencies greater than 10µs. We also
observe a trend of decreasing ability to simulate small
latencies as M2 is accessed less frequently. This occurs when
the M2 portion is small. We hypothesize that this is due to the
decreasing likelihood that the delay simulation code and data
remain resident in the processor caches. In all cases, however,
the pessimistic bias of our platform decreases as the
slowdown due to M2 accesses increases, whether through
longer M2 latencies or through more frequent M2 accesses.

Latency: 10µs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 4 16 32 64 256

KC
JBB
DB
Deal2
MCF
WinB

Latency: 1000µs

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 4 16 32 64 256

KC
JBB
DB
Deal2
MCF
WinB

Figure 5: The effectiveness of write buffers to hide M2 write latency. Each
subfigure evaluates one write latency value. X-axis is the write buffer size
(number of M2 pages). Y-axis is normalized performance (relative to baseline
VMs). All VM are configured with 4µs read latency and 75% M2 fraction.

Our platform is never optimistic.

C. Observational Granularities
When generating the peak bandwidths reported in section

 V.C, we record and reset aggregated statistics of M2 accesses
for each sampling period. Since our implementation is limited
to a maximum sampling rate of 10Hz, our observation
granularity is limited. We want to estimate the likelihood that

this limitation leads to information loss. Our approach is to
see how much additional information we gain by sampling at
10Hz versus 1Hz. In Figure 7, we compare the page access
histograms attained with 10Hz sampling to those we would
be able to extrapolate from 1Hz sampling, assuming a
uniform distribution for M2 access inside a sampling period.
When these histograms generally match, as for MCF, we
have confidence that we are not missing major trends with our
10Hz sampling. However, mismatches as observed in KC,
suggest that even finer sampling granularity would be
desirable to detect short-lived periods of high M2 throughput.
In fact, bursty M2 accesses can explain the seemingly
counterintuitive observation from Figure 4: Even when the
bandwidth limit exceeds the peak 10Hz-sampled throughput,
performance still lags behind the case in which bandwidth is
unlimited.

D. Validation with Prior Results
For validation of our platform, we compare our observed

memory access profiles to those previously published. For
example, the signature behavior of the working set size of
deal2 (from SPEC CPU2006) reported in [11] roughly
matches the M2 page access rate profile obtained from our
experiment (Figure 8). First, it is apparent the memory access
profile is dominated by the application itself instead of other
software components. Second, it is consistent that M2 access
count matches working set size, given the high M2 fraction
(75%) and random M1 replacement policy. Finally, note that
the last three major phases are prolonged in the bottom
subfigure. These exactly correspond to situations where
working set size exceeds the M1 capacity of a hybrid memory
(512MB × 25% = 128MB), causing significant paging into
M2, and a corresponding elongation of the execution time
due to the limited M2 access rate of our platform.

VII. RELATED WORK
An early virtualization-based performance evaluation was

investigated on the IBM VM/370 system [3]. A key

MCF

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2000 4000 6000 8000 10000 12000 14000

Fine
Coarse

KC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1000 1500 2000

Fine
Coarse

Figure 7: Histograms of M2 access throughputs. Each subfigure evaluates
one benchmark where M2 comprises 75% of the total memory and has two
curves—fine and coarse. The fine curve shows what is extracted and
observed from a VMM 10Hz sampling. The coarse curve shows what is
extracted from a VMM 1Hz sampling but uniformly distributed inside its
1-second period. X-axis is M2 page access counts during each 0.1-second
interval. Y-axis reports the number of intervals during which certain M2
access counts are observed, normalized to the total number of intervals.

Slowdown vs Latency
@ 75% M2

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400
Latency (µs)

Sl
ow

do
w

n
du

e
to

 M
2

KC
SPECJBB
SwingBench
Deal2
MCF

Slowdown vs Latency
@ 75% M2

1

10

100

1000

1 10 100 1000

Latency (µs)

S
lo

w
do

w
n

du
e

to
 M

2

KC
SPECJBB
SwingBench
Deal2
MCF

Figure 6: A linear relationship between normalized slowdown and M2 access latency is observed. Y-axis is the slowdown from baseline performance where
there is no M2. X-axis is the read latency. The right subfigure plots the same data in logarithmic scale and shows that as latency drops below 10µs, the
relationship is no longer linear.

difference was the use of virtual time, independent of the real
wall-clock time. The progress of the virtual time was
controlled through a virtual processor speed parameter.
Memory subsystem performance was lumped into the
coarse-grained virtual processor speed. Hence, the
performance of a workload reported in virtual time is strongly
influenced by the accuracy of the virtual processor speed,
which is itself workload-dependent. This circular dependence
presents challenges when the virtual processor speed cannot
be estimated reliably. Still, use of virtual time would broaden
the scope of VMM-based performance evaluation.

The mechanism of our VMM-based simulation resembles
trap-driven memory simulation [24]. Unlike conventional
simulation where each memory access has to be evaluated,
only misses in the simulated cache are evaluated in
trap-driven simulation. The simulator ensures hardware traps
are always installed on the memory locations associated with
the simulated cache miss addresses. Simulation is done in a
kernel trap service routine where it recalculates associations
between memory locations and traps and records statistics.
Special care must be taken to avoid setting traps on code and
data of the simulator itself, as it would complicate the
interpretation of statistics collected.

Analytical studies have previously suggested more levels

in a main memory hierarchy to approach more cost-effective
combinations [16, 19, 2, 13]. The two-level memory
proposed in [8] encompasses the memory system studied
here. The Simics full system simulator [17] was used to
simulate the two-level main memory to obtain first-level miss
counts. Execution time is estimated by adding the product of
the miss counts and the second-level access latency to the
baseline time. Complete runs of large workloads are nearly
impractical due to simulation slowdown. The authors stated
that it took several weeks to bring a simulated machine into
the steady-state execution phase.

Multi-level main memories have been implemented in real
systems [6, 5] and research prototypes [15]. In Multics, a
strategy to treat core memory, drum, and disk as a three-level
system was proposed [6]. The IBM 3090 system provided an
expanded memory in addition to its main memory [5]. Similar
to our conceptual architecture, data in the expanded memory
must go through main memory to become accessible to the
CPU. In [15], a research hardware system was built and
evaluated. It featured a primary memory bus connecting to
fast but low-capacity primary memory modules and a
secondary memory bus connecting to high-capacity but 2x
slower memory modules.

Prior research introducing alternative memories (NAND
flash in particular) into the memory hierarchy concentrated
on finding a narrower usage domain (e.g., file buffer cache
between DRAM and disk) to avoid expected performance
degradation, while achieving other benefits such as power
savings [18, 4, 14, 25]. In [18, 4], the designs were evaluated
through off-line trace-driven simulation. In [14], the design
was evaluated using full system simulation. In [25], the
design was implemented in a custom Linux kernel.
Performance and power characteristics were derived from
measurement based on complete systems.

VIII. CONCLUSION AND FUTURE WORK
In summary, we explore using a VMM for the performance

evaluation of new computer designs. Using a customized
VMM, we investigate some performance trends of hybrid
main memories. We find that only certain workloads are
amenable to hybrid main memory systems when total
memory size is tightly provisioned. However, for all of our
workloads, we show that a hybrid memory system with M2
latency of up to 40µs reduces performance by less than 10%,
as long as DRAM is apportioned for at least 75% of the
working set. This is a reasonable configuration, since today’s
real-world systems are likely to be over-provisioned. We also
evaluate the effectiveness of some organization choices (such
as write buffer and caching scheme) in mitigating the adverse
impact implied by some suboptimal characteristics of
potential M2 memories. Most importantly, we validate the
VMM-based performance evaluation technique, finding that
it offers both evaluation speed typical of hardware
prototyping and evaluation flexibility typical of software
simulation, with modest incremental development effort.

The 3 peaks that are elongated
when we run with 75% flash are the
3 peaks that are above the 128MB
DRAM portion of the hybrid memory.

128MB DRAM

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9

Periods under 10Hz sampling (thousands)

M
2

ac
ce

ss
 c

ou
nt

 (m
ill

io
ns

)

Figure 8: Working set size profile of deal2 reported in [11] superimposed with
our comments (top) and obtained in our experiment (bottom). The experimental
VM has 512MB of total memory, 75% of which is M2.

As future work, we plan to extend our study to SMP VMs
with multiple virtual CPUs. We are also conducting research
on algorithms which adapt to hybrid main memories and plan
to investigate their effectiveness on our platform.

ACKNOWLEDGEMENTS
The simulation code was written when Dong Ye interned at
VMware, and the data was collected by Brian Tsang at
Rambus. We are grateful to David Kaeli for his generous
support. Thanks to Alex Garthwaite and Rajesh
Venkatasubramanian for their technical help and discussions.
Thanks to Beng-Hong Lim, Mendel Rosenblum, Ken Barr,
Peter Desnoyers, Irfan Ahmad and Rajit Kambo for their
comments and suggestions. Thanks to Yiu Cho Lau for his
automation scripts and the VMware performance group for
their help. We appreciate Gary Bronner, Brent Haukness,
William Ng, Eric Linstadt, Ian Shaeffer, and Mark Horowitz
at Rambus for their expertise in memory technologies and
insightful comments. Thanks to Yogesh Verma for helping
set up the simulation systems.

REFERENCES
[1] Keith Adams and Ole Agesen. A Comparison of Software and

Hardware Techniques for x86 Virtualization. In ASPLOS-XII:
Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp.
2–13, 2006.

[2] Alok Aggarwal, Bowen Alpern, Ashok K. Chandra, and Marc Snir. A
Model for Hierarchical Memory. In STOC '87: Proceedings of the 19th
Annual ACM Conference on Theory of Computing, pp. 305–314.

[3] M. D. Canon, D. H. Fritz, J. H. Howard, T. D. Howell, M. F. Mitoma,
and J. Rodriquez-Rosell. A Virtual Machine Emulator for Performance
Evaluation. In SOSP '79: Proceedings of the 7th ACM Symposium on
Operating Systems Principles, 1979.

[4] Feng Chen, Song Jiang, and Xiaodong Zhang. SmartSaver: Turning
Flash Drive into a Disk Energy Saver for Mobile Computers. In
ISLPED '06: Proceedings of the International Symposium on Low
power Electronics and Design, pp. 412–417, 2006.

[5] Edward I. Cohen, Gary M. King, and James T. Brady. Storage
Hierarchies. IBM Systems Journal, 28(1):62–76, 1989.

[6] Fernando J. Corbató, Jerome H. Saltzer, and Chris T. Clingen. Multics
– The First Seven Years. In SJCC '72: Proceedings of the AFIPS Spring
Joint Computer Conference, 1972.

[7] Magnus Ekman and Per Stenstrom. A Case for Multi-Level Main
Memory. In WMPI '04: Proceedings of the 3rd Workshop on Memory
Performance Issues, pp. 1–8, 2004.

[8] Magnus Ekman and Per Stenstrom. A Cost-Effective Main Memory
Organization for Future Servers. In IPDPS '05: Proceedings of the 19th
IEEE International Parallel and Distributed Processing Symposium.

[9] eTesting Labs. Business Winstone 2002. Website, 2002.
www.realworldtech.com/page.cfm?ArticleID=RWT101801000816.

[10] Dominic Giles. Swingbench Benchmark. Website, 2007.
http://dominicgiles.com/swingbench.html.

[11] Darryl Gove. CPU2006 Working Set Size. SIGARCH Computer
Architecture News, 35(1):90–96, 2007.

[12] ITRS. International Technology Roadmap for Semiconductors Report
2007 Edition. http://www.itrs.net/Links/2007ITRS/Home2007.htm.

[13] Bruce L. Jacob, Peter M. Chen, Seth R. Silverman, and Trevor N.
Mudge. An Analytical Model for Designing Memory Hierarchies. IEEE
Transactions on Computers, 45(10):1180–1194, 1996.

[14] Taeho Kgil, David Roberts, and Trevor Mudge. Improving NAND
Flash Based Disk Caches. In ISCA '08: Proceedings of the 35th
International Symposium on Computer Architecture, pp. 327–338.

[15] Kai Li and Karin Peterson. Evaluation of Memory System Extensions.
In ISCA '91: Proceedings of the 18th Annual International Symposium
on Computer Architecture, pp. 84–93, 1991.

[16] Yeong S. Lin and Richard L. Mattson. Cost-Performance Evaluation of
Memory Hierarchies. IEEE Transactions on Magnetics, 8(3):390–392,
1972.

[17] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel
Forsgren, Gustav H, Johan Högberg, Fredrik Larsson, Andreas
Moestedt, and Bengt Werner. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):50–58, 2002.

[18] B. Marsh, F. Douglis, and P. Krishnan. Flash Memory File Caching for
Mobile Computers. In HICSS-27: Proceedings of the 27th Hawaii
Conference on Systems Science, pp. 451–461, 1994.

[19] Satish L. Rege. Cost, Performance and Size Tradeoffs for Different
Levels in a Memory Hierarchy. In ISCA '76: Proceedings of the 3rd
Annual Symposium on Computer Architecture, pp. 64–67D, 1976.

[20] Mendel Rosenblum and Tal Garfinkel. Virtual Machine Monitors:
Current Technology and Future Trends. IEEE Computer, 38(5):39–47,
May 2005.

[21] Timothy Sherwood and Joshua J. Yi. Guest Editors' Introduction:
Computer Architecture Simulation and Modeling. IEEE Micro,
26(4):5–7, 2006.

[22] SPEC. SPECjbb2005 Suite. Website. http://www.spec.org/jbb2005.
[23] SPEC. CPU2006 Suite. Website. http://www.spec.org/cpu2006.
[24] Richard Albert Uhlig. Trap-Driven Memory Simulation. PhD thesis,

EECS Dept., University of Michigan, Ann Arbor, MI. 1995.
[25] Luis Useche, Jorge Guerra, Medha Bhadkamkar, Mauricio Alaron, and

Raju Rangaswami. EXCES: EXternal Caching in Energy Saving
Storage Systems. In HPCA-13: Proceedings of the 13th International
Symposium on High-Performance Computer Architecture, 2008.

[26] VMware. Timekeeping in VMware Virtual Machines. Website, 2005.
http://www.vmware.com/pdf/vmware_timekeeping.pdf.

[27] VMware. Introduction to VMware Infrastructure. Website, 2007.
www.vmware.com/pdf/vi3_35/esx_3/r35/vi3_35_25_intro_vi.pdf.

[28] Carl A. Waldspurger. Memory Resource Management in VMware ESX
Server. In OSDI '02: Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002.

