Lottery Scheduling

Flexible Proportional-Share Resource Management

Carl A. Waldspurger
William E. Welhl

Parallel Software Group
MIT Laboratory for Computer Science

November 15, 1994



Overview

= Scheduling Issues
= Lottery Scheduling
= Implementation

= Experiments

= Related Work

= Conclusions



Scheduling Issues

= Context

e multiplex scarce resources
e concurrently executing clients

e service requests of varying importance

= Quality of Service

= Software Engineering



Conventional Scheduling

= Priority Scheduling

« absolute control (but crude)

« decay-usage scheduling

= Problems

o Often ad hoc
 resource rights don’t vary smoothly
e Unable to control service rates

« N0 modular abstraction



Solution: Lottery Scheduling

= Easily Understood Behavior
= Resource Rights Vary Smoothly
= Flexible Control Over Service Rates

= Modular Abstraction



Lottery Scheduling Basics

» Randomized Mechanism

= Lottery Tickets

e encapsulate resource rights
e issued in different amounts

« first-class objects

= Lotteries

« randomly select winning ticket

« grant resource to client holding winning ticket



Example Lottery

total = 20
random [1 .. 20] = 15

10 S 2

0 2 4 6 8 10 12 14‘16 18 20

winner



Lottery Scheduling Advantages

= Probabilistic Guarantees

« throughput proportional to ticket allocation

e response time inversely proportional to ticket allocation

= Proportional-Share Fairness

e direct control over service rates

 easily understood behavior

= Supports Dynamic Environments

o iImmediately adapts to changes

« fair chance to win each allocation



Managing Diverse Resources

» Processor Time

» Lock Access

= |/O Bandwidth
e disk bandwidth

e network bandwidth

= Space-Shared Resources
 resident VM pages

o disk buffer cache



Flexible Resource Management

» Ticket Transfers

 explicit transfer between clients

 useful when client blocks while waiting

» Ticket Inflation

e client creates more tickets
« violates modularity and load insulation

e convenient among mutually trusting clients



Ticket Currencies

» Tickets Denominated in Currencies

= Modular Resource Management

« locally contain effects of inflation

e isolate loads across logical trust boundaries

= Powerful Abstraction

e name, share, and protect resource rights

« flexibly group or isolate users and tasks



Currency Implementation

base
~~__3000
AN
1000 2000
base base
7 ~
alice bob
~___ 300 100
/O \
100 200 100
alice alice bob
A ‘
taskl task?2 task3

= Computing Values

e currency:
sum value of
backing tickets

e ticket:
compute share of
currency value

= Example

e taskl funding in
base units?

o 190 1000
300

e 333 base units



Kernel Implementation

= Objects: Ticket, Currency

= Operations

e create/destroy ticket, currency
o fund/unfund currency

« compute value of ticket, currency

= Algorithms

« straightforward list-based lottery

e simple currency conversion scheme



Prototype

= Platform
« modified Mach 3.0 microkernel (MK82)

e 25 MHz DECStation 5000/125

e 100 millisecond quantum

= System Overhead

« overhead comparable to standard scheduler
e lightweight core mechanism

e unoptimized prototype



Experiments

= Proportional-Share Service Rates
= Dynamic Ticket Inflation

= Client-Server Ticket Transfers

= Currency Load Insulation

= Lock Waiting Times



Relative Rates

15-

10+

Observed lteration Ratio
T

* 3 = Dhrystone
benchmark

= two tasks

= three 60-second
runs for each ratio

Ticket Ratio

10



Fairness Over Time

30000

Dhrystone
benchmark

20000 -

two tasks

= ?2:1 allocation

Average lterations (per sec)

= 8-second averages

0 - 50 - '160' - '150' - '260
Time (sec)



Monte-Carlo Rates

=
(@)
|

" many trials for
accurate results

= three tasks

a1
I

= ticket inflation

Cumulative Trials (millions)

* funding based
on relative error

o  s00 1000
Time (sec)



Query Processing Rates

40+
30

204

Queries Processed

10-

0 200 400 600 800
Time (sec)

multithreaded
“database” server

three clients

8:3:1 allocation

ticket transfers



Currencies Insulate Loads

" currencies A, B
2.1 funding

6_
_g g = task A
£ funding 100.A
» 47
S
o " task B1
3 B1 _

’ funding 100.B

| / = task B2 joins with
O T e _ funding 100.B

Time (sec)



Lottery-Scheduled Locks

= Waiting to Acquire

 waiters transfer funding to lock owner

 lock owner inherits aggregate funding to acquire CPU

» Release

« return funding to waiters
 hold lottery among waiters

e new winner inherits funding

= Avoids Priority Inversion



Lock Experiment

= Groups A, B with 2:1 Allocation

= Acquire, Hold 50ms, Release, Compute 50ms
= Average Waiting Time
e A waits 450ms, B waits 948ms

e 1:2.11 response time ratio

= Lock Acquisitions
« A completes 763, B completes 423

e 1.80:1 throughput ratio



Related Work

= Priority Schedulers

» Fair-Share Schedulers

« dynamically manipulate priorities
e [Hen84,Kay88,Hel93]

= Microeconomic Schedulers

e auctions, bidding for resources
e [Dre88,Fer88,Wal92]

= AN2 Network Switch Scheduler

« statistical matching technique
e [And93]



Conclusions

= Novel Randomized Scheduling Mechanism
= Easily Understood Behavior

= Precise Control Over Service Rates

= Modular Resource Management

= Simple, Efficient Implementation

» Generalizes to Diverse Resources



