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Scheduling Issues

Context� multiplex scarce resources� concurrently executing clients� service requests of varying importance

Quality of Service

Software Engineering



Conventional Scheduling

Priority Scheduling� absolute control (but crude)� decay-usage scheduling

Problems� often ad hoc� resource rights don’t vary smoothly� unable to control service rates� no modular abstraction



Solution: Lottery Scheduling

Easily Understood Behavior

Resource Rights Vary Smoothly

Flexible Control Over Service Rates

Modular Abstraction



Lottery Scheduling Basics

Randomized Mechanism

Lottery Tickets� encapsulate resource rights� issued in different amounts� first-class objects

Lotteries� randomly select winning ticket� grant resource to client holding winning ticket



Example Lottery

total = 20
random [1 .. 20] = 15

10 2 5 1 2

0 2 4 6 8 10 12 14 16 18 20

winner



Lottery Scheduling Advantages

Probabilistic Guarantees� throughput proportional to ticket allocation� response time inversely proportional to ticket allocation

Proportional-Share Fairness� direct control over service rates� easily understood behavior

Supports Dynamic Environments� immediately adapts to changes� fair chance to win each allocation



Managing Diverse Resources

Processor Time

Lock Access

I/O Bandwidth� disk bandwidth� network bandwidth

Space-Shared Resources� resident VM pages� disk buffer cache



Flexible Resource Management

Ticket Transfers� explicit transfer between clients� useful when client blocks while waiting

Ticket Inflation� client creates more tickets� violates modularity and load insulation� convenient among mutually trusting clients



Ticket Currencies

Tickets Denominated in Currencies

Modular Resource Management� locally contain effects of inflation� isolate loads across logical trust boundaries

Powerful Abstraction� name, share, and protect resource rights� flexibly group or isolate users and tasks



Currency Implementation
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Kernel Implementation

Objects: Ticket, Currency

Operations� create/destroy ticket, currency� fund/unfund currency� compute value of ticket, currency

Algorithms� straightforward list-based lottery� simple currency conversion scheme



Prototype

Platform� modified Mach 3.0 microkernel (MK82)� 25 MHz DECStation 5000/125� 100 millisecond quantum

System Overhead� overhead comparable to standard scheduler� lightweight core mechanism� unoptimized prototype



Experiments

Proportional-Share Service Rates

Dynamic Ticket Inflation

Client-Server Ticket Transfers

Currency Load Insulation

Lock Waiting Times



Relative Rates
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Fairness Over Time
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Monte-Carlo Rates
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Query Processing Rates
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Currencies Insulate Loads
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Lottery-Scheduled Locks

Waiting to Acquire� waiters transfer funding to lock owner� lock owner inherits aggregate funding to acquire CPU

Release� return funding to waiters� hold lottery among waiters� new winner inherits funding

Avoids Priority Inversion



Lock Experiment

Groups A, B with 2 : 1 Allocation

Acquire, Hold 50ms, Release, Compute 50ms

Average Waiting Time� A waits 450ms, B waits 948ms� 1 : 2.11 response time ratio

Lock Acquisitions� A completes 763, B completes 423� 1.80 : 1 throughput ratio



Related Work

Priority Schedulers

Fair-Share Schedulers� dynamically manipulate priorities� [Hen84,Kay88,Hel93]

Microeconomic Schedulers� auctions, bidding for resources� [Dre88,Fer88,Wal92]

AN2 Network Switch Scheduler� statistical matching technique� [And93]



Conclusions

Novel Randomized Scheduling Mechanism

Easily Understood Behavior

Precise Control Over Service Rates

Modular Resource Management

Simple, Efficient Implementation

Generalizes to Diverse Resources


