
Lottery Scheduling
Flexible Proportional-Share Resource Management

Carl A. Waldspurger

William E. Weihl

Parallel Software Group
MIT Laboratory for Computer Science

November 15, 1994



Overview

Scheduling Issues

Lottery Scheduling

Implementation

Experiments

Related Work

Conclusions



Scheduling Issues

Context� multiplex scarce resources� concurrently executing clients� service requests of varying importance

Quality of Service

Software Engineering



Conventional Scheduling

Priority Scheduling� absolute control (but crude)� decay-usage scheduling

Problems� often ad hoc� resource rights don’t vary smoothly� unable to control service rates� no modular abstraction



Solution: Lottery Scheduling

Easily Understood Behavior

Resource Rights Vary Smoothly

Flexible Control Over Service Rates

Modular Abstraction



Lottery Scheduling Basics

Randomized Mechanism

Lottery Tickets� encapsulate resource rights� issued in different amounts� first-class objects

Lotteries� randomly select winning ticket� grant resource to client holding winning ticket



Example Lottery

total = 20
random [1 .. 20] = 15

10 2 5 1 2

0 2 4 6 8 10 12 14 16 18 20

winner



Lottery Scheduling Advantages

Probabilistic Guarantees� throughput proportional to ticket allocation� response time inversely proportional to ticket allocation

Proportional-Share Fairness� direct control over service rates� easily understood behavior

Supports Dynamic Environments� immediately adapts to changes� fair chance to win each allocation



Managing Diverse Resources

Processor Time

Lock Access

I/O Bandwidth� disk bandwidth� network bandwidth

Space-Shared Resources� resident VM pages� disk buffer cache



Flexible Resource Management

Ticket Transfers� explicit transfer between clients� useful when client blocks while waiting

Ticket Inflation� client creates more tickets� violates modularity and load insulation� convenient among mutually trusting clients



Ticket Currencies

Tickets Denominated in Currencies

Modular Resource Management� locally contain effects of inflation� isolate loads across logical trust boundaries

Powerful Abstraction� name, share, and protect resource rights� flexibly group or isolate users and tasks



Currency Implementation

base
3000

2000
base

1000
base

bob
100

alice
300

200
alice

100
bob

task2 task3

100
alice

task1

Computing Values� currency:
sum value of
backing tickets� ticket:
compute share of
currency value

Example� task1 funding in
base units?� 100

300

� 1000� 333 base units



Kernel Implementation

Objects: Ticket, Currency

Operations� create/destroy ticket, currency� fund/unfund currency� compute value of ticket, currency

Algorithms� straightforward list-based lottery� simple currency conversion scheme



Prototype

Platform� modified Mach 3.0 microkernel (MK82)� 25 MHz DECStation 5000/125� 100 millisecond quantum

System Overhead� overhead comparable to standard scheduler� lightweight core mechanism� unoptimized prototype



Experiments

Proportional-Share Service Rates

Dynamic Ticket Inflation

Client-Server Ticket Transfers

Currency Load Insulation

Lock Waiting Times



Relative Rates

0 2 4 6 8 10
Ticket Ratio

0

5

10

15

O
b

se
rv

ed
 It

er
at

io
n

 R
at

io Dhrystone

benchmark

two tasks

three 60-second

runs for each ratio



Fairness Over Time

0 50 100 150 200
Time (sec)

0

10000

20000

30000

A
ve

ra
g

e 
It

er
at

io
n

s 
(p

er
 s

ec
)

Dhrystone

benchmark

two tasks

2 : 1 allocation

8-second averages



Monte-Carlo Rates

0 500 1000
Time (sec)

0

5

10

C
u

m
u

la
ti

ve
 T

ri
al

s 
(m

ill
io

n
s)

many trials for

accurate results

three tasks

ticket inflation

funding based

on relative error



Query Processing Rates

0 200 400 600 800
Time (sec)

0

10

20

30

40

Q
u

er
ie

s 
P

ro
ce

ss
ed

multithreaded

“database” server

three clients

8 : 3 : 1 allocation

ticket transfers



Currencies Insulate Loads

0 100 200 300
Time (sec)

0

2

4

6

8

It
er

at
io

n
s 

(m
ill

io
n

s) A

B1

B2

currencies A, B

2 : 1 funding

task A

funding 100.A

task B1

funding 100.B

task B2 joins with

funding 100.B



Lottery-Scheduled Locks

Waiting to Acquire� waiters transfer funding to lock owner� lock owner inherits aggregate funding to acquire CPU

Release� return funding to waiters� hold lottery among waiters� new winner inherits funding

Avoids Priority Inversion



Lock Experiment

Groups A, B with 2 : 1 Allocation

Acquire, Hold 50ms, Release, Compute 50ms

Average Waiting Time� A waits 450ms, B waits 948ms� 1 : 2.11 response time ratio

Lock Acquisitions� A completes 763, B completes 423� 1.80 : 1 throughput ratio



Related Work

Priority Schedulers

Fair-Share Schedulers� dynamically manipulate priorities� [Hen84,Kay88,Hel93]

Microeconomic Schedulers� auctions, bidding for resources� [Dre88,Fer88,Wal92]

AN2 Network Switch Scheduler� statistical matching technique� [And93]



Conclusions

Novel Randomized Scheduling Mechanism

Easily Understood Behavior

Precise Control Over Service Rates

Modular Resource Management

Simple, Efficient Implementation

Generalizes to Diverse Resources


