
Overshadow:
A Virtualization-Based Approach to

Retrofitting Protection in Commodity Operating Systems

Mike Chen Tal Garfinkel E. Christopher Lewis
Pratap Subrahmanyam Carl A. Waldspurger

VMware, Inc.

Dan Boneh Jeffrey Dwoskin Dan R.K. Ports

Carl Waldspurger
VMware R&D

ASPLOS ’08
March 3, 2008

Dan Boneh Jeffrey Dwoskin Dan R.K. Ports
Stanford Princeton MIT

Motivation

Applications Handle Sensitive Data

Financial, medical, insurance, military …

Commodity Systems Vulnerable

Large and complex TCB, broad attack surfaces

OS kernel, file system, daemons, services …

2Copyright © 2008 VMware, Inc. All rights reserved.

OS kernel, file system, daemons, services …

Hard to configure, manage, maintain

Privilege escalation ⇒⇒⇒⇒ game over

Data Theft Soaring

Reached “unprecedented levels” in 2007

Identity theft, breach notification laws …

Limitations of Existing Solutions

Rewrite OS / Applications

Split into low- and high-assurance portions
e.g. microkernels, Microsoft Palladium/NGSCB

Expensive, high barriers to adoption

Multiple Virtual Machines

Trusted/untrusted or specialized VMs (e.g. Proxos, Terra)

3Copyright © 2008 VMware, Inc. All rights reserved.

Trusted/untrusted or specialized VMs (e.g. Proxos, Terra)

Cumbersome, still vulnerable to OS compromise

Hardware Approaches

Special-purpose secure co-processors (e.g. IBM 4758)

XOM and SP processor architectures

Require substantial modifications to hardware/OS/apps

Goals

Protect Application Data

Privacy and integrity

In memory and on disk

Remove OS from TCB

Provide last line of defense

4Copyright © 2008 VMware, Inc. All rights reserved.

Provide last line of defense

Even if attacker compromises guest OS

Backwards Compatibility

Unmodified commodity OS

Unmodified application binary

Non-Goal: Availability

Overshadow Topics

Focus of Talk

Protecting application memory

Secure control transfers

Adapting system call interface

Performance

5Copyright © 2008 VMware, Inc. All rights reserved.

In Paper

Secure context identification

Managing protection metadata

Implications of malicious system call interface
(work in progress)

Overshadow Architecture

VMM Protects App Memory

New virtualization barrier

App trusts VMM, but not OS

Cloaking: Two Views of Memory

App sees normal view

OS sees encrypted view

Shim

Cloaked App

Guest OS Kernel

Other Apps
Other Apps
Other Apps

6Copyright © 2008 VMware, Inc. All rights reserved.

OS sees encrypted view

Shim: App/OS Interactions

Interposes on system calls,
interrupts, faults, signals

Transparent to application

Two Virtualization Barriers

VMM

Hardware

Guest OS Kernel

Virtual Machine

Memory Mapping: OS

virtual physical

7Copyright © 2008 VMware, Inc. All rights reserved.

OS page table

Memory Mapping: VMM

virtual physical machine

8Copyright © 2008 VMware, Inc. All rights reserved.

guest OS vmm

Multi-Shadowing: Context-Dependent Views

virtual physical

machine1

view1

9Copyright © 2008 VMware, Inc. All rights reserved.

guest OS
view2

machine2

Cloaking: Multi-Shadowing + Cryptography

virtual physical

plaintext
app
view

machine

10Copyright © 2008 VMware, Inc. All rights reserved.

guest OS
sys
view

X
unmapped

Cloaking: System Accesses Page

virtual physical

plaintext
app
view

machine
encrypted

11Copyright © 2008 VMware, Inc. All rights reserved.

guest OS
sys
view

X

Fault into VMM: encrypt/hash contents, remap

Cloaking: Application Accesses Page

virtual physical

app
view

X

encryptedplaintext

12Copyright © 2008 VMware, Inc. All rights reserved.

guest OS
sys
view

machine
encrypted

Fault into VMM: verify hash, decrypt, remap

plaintext

Cloaking Application Resources

Basic Strategy

Protect existing memory-mapped objects
e.g. stack, heap, mapped files, shared mmaps

Make everything else look like one
e.g. emulate file read/write using mmap

OS Still Manages Application Resources

13Copyright © 2008 VMware, Inc. All rights reserved.

OS Still Manages Application Resources

Including demand-paged application memory

Moves cloaked data without seeing plaintext contents

Encryption/decryption typically infrequent

Shim: Supporting Unmodified Applications

Challenges

Securely identify which app is running

Secure control transfers between OS and app

Adapting system calls

Solution: Shim

14Copyright © 2008 VMware, Inc. All rights reserved.

Solution: Shim

OS-specific user-level program

Linked into application address space

Mostly cloaked, plus uncloaked trampolines and buffers

Communicates with VMM via hypercalls

Shim: Handling Faults and Interrupts

1. App is executing

2. Fault traps into VMM

Saves and scrubs registers

Sets up trampoline to shim

Transfers control to kernel

3. Kernel executes

Handles fault as usual

15Copyright © 2008 VMware, Inc. All rights reserved.

Handles fault as usual

Returns to shim via trampoline

4. Shim hypercalls into VMM

Resume cloaked execution

5. VMM returns to app

Restores registers

Transfers control to app

Shim: Handling System Calls

Extra Transitions

Superset of fault handling

Handlers in cloaked shim

interpose on system calls

System Call Adaptation

Arguments may be pointers

16Copyright © 2008 VMware, Inc. All rights reserved.

Arguments may be pointers
to cloaked memory

Marshall and unmarshall

via buffer in uncloaked shim

More complex: pipes,

signals, fork, file I/Omarshallunmarshall

Protecting Data Integrity

Challenges

Enforce integrity, ordering, freshness

For code, data, memory-mapped files …

VMM Manages Per-Page Metadata

Tracks what’s “supposed to be” in each memory page

17Copyright © 2008 VMware, Inc. All rights reserved.

Tracks what’s “supposed to be” in each memory page

IV – randomly-generated initialization vector

H – secure integrity hash

Implementation

Overshadow System

Based on 32-bit x86 VMware VMM

Shim for Linux 2.6.x guest OS

Full cloaking of application code, data, files

Lines of code: + 6600 to VMM, ~ 13100 in shim

18Copyright © 2008 VMware, Inc. All rights reserved.

Not heavily optimized

Runs Real Applications

Apache web server, PostgreSQL database

Emacs, bash, perl, gcc, …

Microbenchmark Performance

System Calls

Simple PASSTHRU

MARSHALL args

Processes

FORKW – fork/wait

process creation,

60

80

100

%
 U

n
c

lo
a

k
e

d
 P

e
rf

o
rm

a
n

c
e

19Copyright © 2008 VMware, Inc. All rights reserved.

process creation,
COW overheads

File-Backed mmaps

MMAPW – write word
per page, flush to disk

MMAPR – read words

back from buffer cache

0

20

40

PASSTHRU MARSHALL FORKW MMAPW MMAPR

%
 U

n
c

lo
a

k
e

d
 P

e
rf

o
rm

a
n

c
e

Benchmark Performance

Web

Apache web server

caching disabled

Remote load generator

ab benchmark tool

Database60

80

100

Full Cloaking Without File Cloaking

%
 U

n
c

lo
a

k
e

d
 P

e
rf

o
rm

a
n

c
e

20Copyright © 2008 VMware, Inc. All rights reserved.

PostgresSQL server

DBT2 benchmark

Compute

SPECint CPU2006

gcc – worst individual

SPEC benchmark

0

20

40

Apache DBT2 SPEC gcc%
 U

n
c

lo
a

k
e

d
 P

e
rf

o
rm

a
n

c
e

Conclusions

Promising New Approach

VM-based protection of application data

Privacy and integrity, even if OS compromised

Backwards compatible

Powerful New Mechanisms

21Copyright © 2008 VMware, Inc. All rights reserved.

Multi-shadowing, cloaking

Shim extends reach of VMM

Future Directions

Security implications of a malicious OS

Additional uses of multi-shadowing

Questions?

For More Information

Read the paper

Send feedback to mailing list
overshadow@vmware.com

Job Opportunities

22Copyright © 2008 VMware, Inc. All rights reserved.

VMware is hiring!

Interns and full-time positions

Feel free to contact me directly
carl@vmware.com

Backup Slides

23Copyright © 2008 VMware, Inc. All rights reserved.

What is a Virtual Machine?

Hardware-Level Abstraction

Virtual hardware: processors,
memory, chipset, I/O devices, etc.

Encapsulates all OS and
application state

Virtualization Software

24Copyright © 2008 VMware, Inc. All rights reserved.

Extra level of indirection
decouples hardware and OS

Multiplexes physical hardware

across multiple “guest” VMs

Strong isolation between VMs

Manages physical resources,
improves utilization

Basic Cloaking Protocol

State Transition Diagram

Single cloaked page

Privacy and integrity

Single Page, Two Views

App (A) sees plaintext

via application shadow

25Copyright © 2008 VMware, Inc. All rights reserved.

via application shadow

Kernel (K) sees ciphertext

via system shadow

Protection Metadata

IV – randomly-generated

initialization vector

H – secure hash

Secure Context Identification

Application Contexts

Must identify uniquely to switch shadow page tables

Must work even with adversarial OS

Shim-Based Approach

Cloaked Thread Context (CTC) in cloaked shim

26Copyright © 2008 VMware, Inc. All rights reserved.

Cloaked Thread Context (CTC) in cloaked shim

Initialized at startup to contain ASID and random value

Random value is protected in cloaked memory

Transitions from uncloaked to cloaked execution
use self-identifying hypercalls with pointer to CTC

VMM verifies expected ASID and random value in CTC

Cloaked File I/O

Interpose on I/O System Calls

Read, write, lseek, fstat, etc.

Uncloaked files use simple marshalling

Cloaked Files

Emulate read and write using mmap

27Copyright © 2008 VMware, Inc. All rights reserved.

Emulate read and write using mmap

Copy data to/from memory-mapped buffers

Decrypted automatically when read by app;
Encrypted automatically when flushed to disk by kernel

Shim caches mapped file regions (1MB chunks)

Prepend file header containing size, offset, etc.

Protection Metadata: Overview

Per-Page Metadata

Required to enforce privacy, integrity, ordering, freshness

IV – randomly-generated initialization vector

H – secure integrity hash

Tracked by VMM

28Copyright © 2008 VMware, Inc. All rights reserved.

Tracked by VMM

Metadata for pages mapped into application address space

Intuitively, what’s “supposed” to be in each memory page

(ASID, GVPN) → (IV, H)

Protection Metadata: Details

Protected Resource

Need indirection to support sharing and persistence

(RID, RPN) – unique resource identifer, page offset

Ordered set of (IV, H) pairs in VMM “metadata cache”

Protected Address Space

29Copyright © 2008 VMware, Inc. All rights reserved.

Shim tracks mappings (start, end) → (RID, RPN)

VMM caches in “metadata lookaside buffer”

VMM upcalls into shim on MLB miss

Metadata Lookup

(ASID, VPN) → (RID, RPN) → (IV, H)

Persistent metadata stored securely in guest filesystem

Managing Protection Metadata

30Copyright © 2008 VMware, Inc. All rights reserved.

Q: Can OS Modify or Inject Application Code?

Answer: No.

Application code resides in cloaked memory;
it’s encrypted and integrity-protected.

Any modifications will be detected by integrity checks;
modified page contents won’t match hash in MDC.

31Copyright © 2008 VMware, Inc. All rights reserved.

Q: Can OS Modify Application Instruction Pointer?

Answer: No.

Application registers, including the instruction pointer (IP),
are saved in the cloaked thread context (CTC) after all
faults/interrupts/syscalls, and restored when cloaked
execution resumes.

The CTC resides in cloaked memory; it’s encrypted and

32Copyright © 2008 VMware, Inc. All rights reserved.

The CTC resides in cloaked memory; it’s encrypted and
integrity-protected, so the OS can’t read or modify it.

Q: Can OS Tamper with Loader?

Answer: No.

Before entering cloaked execution, the VMM can verify that the
shim was loaded properly by comparing hashes of the
appropriate memory pages with their expected values.

If this integrity check fails, it will prevent the application from
accessing any cloaked resources (files or memory), except in

33Copyright © 2008 VMware, Inc. All rights reserved.

accessing any cloaked resources (files or memory), except in
encrypted form.

So while the OS could execute an arbitrary program instead, it
would be unable to access any protected data.

Q: Can OS Pretend to Be Application and
Issue “Resume Cloaked Exec” Hypercall?

Answer: Yes, but it can’t execute malicious code.

When an application returns from a context switch or other
interrupt, the uncloaked shim makes a hypercall asking the VMM
to resume cloaked execution.

The OS could pretend to be the application, and make this same
hypercall, but integrity checking will cause it to fail unless the
CTC is mapped in the proper location.

34Copyright © 2008 VMware, Inc. All rights reserved.

CTC is mapped in the proper location.

Even if the OS succeeds, the VMM will enter cloaked execution
with the proper saved registers, including the IP. All application
pages must be unaltered or integrity checks will fail.

Thus, the OS can only cause cloaked execution to be resumed
at the proper point in the proper application code, so it still can’t
execute malicious code.

