
ProfileMe: Hardware-Support for
Instruction-Level Profiling on

Out-of-Order Processors

Jeffrey Dean Jamey Hicks Carl Waldspurger

TM 1

Jeffrey Dean Jamey Hicks Carl Waldspurger

William Weihl George Chrysos

Digital Equipment Corporation

Motivation

• Identify Performance Bottlenecks

– especially unpredictable dynamic stalls
e.g. cache misses, branch mispredicts, etc.

– complex out-of-order processors make this difficult

• Guide Optimizations

– help programmers understand and improve code

TM 2

– help programmers understand and improve code

– automatic, profile-driven optimizations

• Profile Production Workloads

– low overhead

– transparent

– profile whole system

Outline

• Obtaining Instruction-Level Information

• ProfileMe

– sample instructions, not events

– sample interactions via paired sampling

• Potential Applications of Profile Data

• Future Work

TM 3

• Future Work

• Conclusions

Existing Instruction-Level Sampling

• Use Hardware Event Counters

– small set of software-loadable counters

– each counts single event at a time, e.g. dcache miss

– counter overflow generates interrupt

• Advantages

– low overhead vs. simulation and instrumentation

TM 4

– low overhead vs. simulation and instrumentation

– transparent vs. instrumentation

– complete coverage, e.g. kernel, shared libs, etc.

• Effective on In-Order Processors

– analysis computes execution frequency

– heuristics identify possible reasons for stalls

– example: DIGITAL’s Continuous Profiling Infrastructure

Problems with Event-Based Counters

• Can’t Simultaneously Monitor All Events

• Limited Information About Events

– “event has occurred”, but no additional context
e.g. cache miss latencies, recent execution path, ...

• Blind Spots in Non-Interruptible Code

• Key Problem: Imprecise Attribution

TM 5

• Key Problem: Imprecise Attribution

– interrupt delivers restart PC, not PC that caused event

– problem worse on out-of-order processors

Problem: Imprecise Attribution

• Experiment

– monitor data loads

– loop: single load +
hundreds of nops

• In-Order Processor

– Alpha 21164

– skew; large peak

0

2

4

6

8

10

12

14

782

load

TM 6

– skew; large peak

– analysis plausible

• Out-of-Order Processor

– Intel Pentium Pro

– skew and smear

– analysis hopeless
0 50 100 150 200

14

16

18

20

22

24

Sample Count

Outline

• Obtaining Instruction-Level Information

• ProfileMe

– sample instructions, not events

– sample interactions via paired sampling

• Potential Applications of Profile Data

• Future Work

TM 7

• Future Work

• Conclusions

ProfileMe: Instruction-Centric Profiling

fetch map issue exec retire

counter

overflow?

tag!

TM 8

icache

branch
predict

dcache

interrupt!arith
units

done?

pc addr retired?miss?stage latencies

tagged?

historymp?capture!

internal processor registers

miss?

Instruction-Level Statistics

• PC + Retire Status ���� execution frequency

• PC + Cache Miss Flag ���� cache miss rates

• PC + Branch Mispredict ���� mispredict rates

• PC + Event Flag ���� event rates

TM 9

• PC + Branch Direction ���� edge frequencies

• PC + Branch History ���� path execution rates

• PC + Latency ���� instruction stalls

Example: Retire Count Convergence

1

1.5

2

E
s

ti
m

a
te

 /
 A

c
tu

a
l

Accuracy ∝ 1/√N

TM 10

0

0.5

0 250 500

Number of Retired Samples (N)

E
s

ti
m

a
te

 /
 A

c
tu

a
l

Identifying True Bottlenecks

• ProfileMe: Detailed Data for Single Instruction

• In-Order Processors

– ProfileMe PC + latency data identifies stalls

– stalled instructions back up pipeline

• Out-of-Order Processors

– explicitly designed to mask stall latency

TM 11

– explicitly designed to mask stall latency
e.g. dynamic reordering, speculative execution

– stall does not necessarily imply bottleneck

• Example: Does This Stall Matter?

load r1, …

add …,r1,… average latency: 35.0 cycles
… other instructions …

Issue: Need to Measure Concurrency

• Interesting Concurrency Metrics

– retired instructions per cycle

– issue slots wasted while an instruction is in flight

– pipeline stage utilization

How to Measure Concurrency?

TM 12

How to Measure Concurrency?

• Special-Purpose Hardware

– some metrics difficult to measure
e.g. need retire/abort status

• Sample Potentially-Concurrent Instructions

– aggregate info from pairs of samples

– statistically estimate metrics

Paired Sampling

• Sample Two Instructions

– may be in-flight simultaneously

– replicate ProfileMe hardware, add intra-pair distance

• Nested Sampling

– sample window around first profiled instruction

– randomly select second profiled instruction

TM 13

– randomly select second profiled instruction

– statistically estimate frequency for F(first, second)

+W

... ...

... ...

... ...

... ...

-W

time

overlap no overlap

Other Uses of Paired Sampling

• Path Profiling

– two PCs close in time can identify execution path

– identify control flow, e.g. indirect branches, calls, traps

• Direct Latency Measurements

– data load-to-use

– loop iteration cost

TM 14

– loop iteration cost

Outline

• Obtaining Instruction-Level Information

• ProfileMe

– sample instructions, not events

– sample interactions via paired sampling

• Potential Applications of Profile Data

• Future Work

TM 15

• Future Work

• Conclusions

Exploiting Profile Data

• Latencies and Concurrency

– identify and understand bottlenecks

– improved scheduling, code generation

• Cache Miss Data

– code stream rearrangement

– guide prefetching, instruction scheduling

TM 16

– guide prefetching, instruction scheduling

• Miss Addresses

– inform OS page mapping policies

– data reorganization

• Branch History, PC Pairs

– identify common execution paths

– trace scheduling

Example: Path Profiles

• Experiment

– intra-procedural
path reconstruction

– control-flow merges

– SPECint95 data

• Execution Counts

– most likely path 50

60

70

80

90

100

%
 S

in
g

le

C

o
rr

e
c

t
P

a
th

TM 17

– most likely path
based on frequency

• History Bits

– path consistent with
global branch history

• History + Pairs

– path must contain
both PCs in pair

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11

Path Length (branches)

%
 S

in
g

le

C

o
rr

e
c

t
P

a
th

Future Work

• Analyze Production Systems

• Develop New Analyses for ProfileMe Data

– “cluster” samples using events, branch history

– reconstruct frequently-occurring pipeline states

• Explore Automatic Optimizations

– better scheduling, prefetching, code and data layout

TM 18

– better scheduling, prefetching, code and data layout

– inform OS policies

• ProfileMe for Memory System Transactions

– can sample memory behavior not visible from processor

– sample cache sharing and interference

Related Work

• Westcott & White (IBM Patent)

– collects latency and some event info for instructions

– only for retired instructions

– only when instruction is assigned particular inum,
which can introduce bias into samples

•

TM 19

• Specialized Hardware Mechanisms

– CML Buffer (Bershad et al.) - locations of frequent misses

– Informing Loads (Horowitz et al.) - status bit to allow SW to
react to cache misses

– can often obtain similar info by analyzing ProfileMe data

Conclusions

• ProfileMe: “Sample Instructions, Not Events”

– provides wealth of instruction-level information

– paired sampling reveals dynamic interactions

– modest hardware cost

– useful for in-order processors, essential for out-of-order

• Improvements Over Imprecise Event Counters

TM 20

• Improvements Over Imprecise Event Counters

– precise attribution

– no blind spots

– improved event collection
e.g. branch history, concurrency, correlated events

Further Information

DIGITAL’s Continuous Profiling Infrastructure project:

http://www.research.digital.com/SRC/dcpi

TM 21

http://www.research.digital.com/SRC/dcpi

