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Multithreading

Goal: tolerate long latencies

Approach: compute while waiting

Mechanism: rapid context switching
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Flexible Contexts

Thread requirements vary� register usage is thread-dependent� decreasing marginal benefits from more registers

Software-based approach� application-specific partitioning� variable-size contexts� static or dynamic division

More resident contexts� better utilization of scarce registers� improve processor efficiency
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Register Relocation

Flexible base/offset scheme

Base: register relocation mask (RRM)

Offset: context-relative register numbers

Examples:
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Hardware Support

Register relocation mask (RRM)� special hardware register� dlg ne bits for n general registers

New instruction: ldrrm R� set RRM from low-order bits of R� delay slots may follow

Instruction decode modifications� bitwise OR instruction operands and RRM� RISC fixed-field decoding
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Software Support

Context switch

Context (de)allocate

Context (un)load
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Context Scheduling

Managed in software� no hardware task queues� flexible control over policy

Sample policy� resident context queue� round-robin scheduling� fast context switch � 4 to 6 cycles
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Context Management

Implemented in software� flexible partitioning of register file� static or dynamic� identical or varying sizes

Context allocation� general-purpose dynamic routines� search allocation bitmap� simple shift and mask operations� alloc � 25 cycles, dealloc � 5 cycles

Context loading� save/restore exact number of registers� single routine with multiple entry points



Compiler Support

Compiler informs runtime system� number of registers used by thread� computed by traversing thread call graph

Compiler protects thread contexts� threads associated with single application� single address space� register and memory overwrites similar

Potential optimizations� choose number of registers per context� decreasing marginal benefits� power-of-two context size constraint� example: allocate 16 vs. 17 registers



Experiments

Overview� cache faults� synchronization faults

Conventional multithreading� fixed-size contexts: 32 regs� zero alloc/dealloc costs

Register relocation� variable-size contexts: 4, 8, 16, 32 regs� conservative alloc/dealloc costs

Simulation Environment� single multiprocessor node� coarsely multithreaded architecture� synthetic threads with stochastic run lengths� Proteus simulator



Tolerating Cache Faults

Parameters� run lengths (R) geometrically distributed� remote memory latency constant� contexts never unloaded

Example results� register file size = 128� threads require 6 to 24 registers
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Tolerating Synchronization Faults

Parameters� run lengths (R) geometrically distributed� synchronization latency exponentially distributed� competitive two-phase unloading policy

Example results� register file size = 128� threads require 6 to 24 registers
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Experiment Discussion

Many additional experiments� similar results� both cache and synchronization faults� homogeneous context sizes

Significant performance improvements� improved processor efficiency� better over wide range of parameters� 2� improvement for many workloads

Processor efficiency [Saavedra-Barrera 90]
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Related Work

Generally inflexible, hardware-intensive

Finely multithreaded processors� cycle-by-cycle interleaving� HEP, MASA, Horizon, Tera, Monsoon

Coarsely multithreaded processors� execute longer instruction blocks� switch on high-latency operations� APRIL, hybrid dataflow/von-Neumann

Named State Processor� fully associative register file� more flexible, but hardware-intensive

Base + offset register addressing� addition flexible but expensive� Am29000, HEP



Conclusions

Register relocation� multiple variable-size contexts� minimal hardware support

Significant flexibility� software-based approach� flexible partitioning of register file� flexible control over scheduling

Substantial performance improvements� better utilization of registers� enables more resident contexts� tolerate longer latencies, shorter run lengths� improved processor efficiency



Extensions and Future Work

Software-only approach� generate multiple versions of code� use disjoint register subsets

Multiple active contexts� select from multiple RRMs� context-specific operands� example: ADD C0.R3, C0.R4, C1.R6

Cache interference effects� threads share common cache� most interference destructive� fine-grain parallelism shrinks working sets� utilization vs. interference tradeoff

Arbitrary context sizes� addition vs. OR for relocation� efficient software support


